Atorvastatin Reduces Plaque Vulnerability in an Atherosclerotic Rabbit Model by Altering the 5-Lipoxygenase Pathway

Guangyi Zhou, Song Ge, Dezhi Liu, Gelin Xu, Renliang Zhang, Qin Yin, Wusheng Zhu, Jieli Chen, Xinfeng Liu

a Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China; b Department of Neurology, Henry Ford Hospital, Detroit, Mich., USA

Key Words
Atorvastatin • Atherosclerosis • 5-Lipoxygenase-activating protein

Abstract
Objective: The 5-lipoxygenase catalyzed formation of leukotriene lipid mediators is a mediator for inflammatory response in arteries. The present study investigated the relationship between atorvastatin and the 5-lipoxygenase pathway in an atherosclerotic rabbit model. Methods: Thirty male New Zealand White Rabbits were randomized into negative control, positive control and atorvastatin groups. At week 4, the rabbits were subjected to carotid balloon-dilation injury or carotid balloon-dilation injury, followed by treatment with atorvastatin. At week 12, all the animals were sacrificed. Plasma lipids, LTD₄, and 15-epi-lipoxin A₄ were measured using the enzymatic endpoint method and ELISA, respectively. RT-PCR was performed to detect the gene expression of 5-lipoxygenase-activating protein and cysLT₁R in rabbit carotid arteries. Finally, histological analysis was used to evaluate the pathophysiological changes of rabbit carotid arteries. Results: The results showed atorvastatin markedly lowered serum lipids and LTD₄ levels compared with the control group. Similarly, mRNA expression of 5-lipoxygenase-activating protein and cysLT₁R was significantly inhibited by atorvastatin. Decreased carotid plaque instability was evident in atorvastatin-treated animals, as demonstrated by a thickened elastic layer, less neointima hyperplasia and macrophage proliferation. Conclusions: Atorvastatin may stabilize carotid plaque by regulating the 5-lipoxygenase pathway in atherosclerotic rabbits and delay the progression of atherosclerosis by exerting anti-inflammatory effects.

Introduction
Stroke is the third leading cause of morbidity and long-term disability worldwide. Plaque vulnerability, rather than arterial stenosis, plays a crucial role in the pathophysiology of recurrent atherothrombotic stroke [1]. The characteristics of vulnerable plaque include a large lipid core, thin fibrous cap, inflammatory cell aggregation and secretion of metalloproteinases and cytokines. Atorvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, can reduce plaque destabilization by downregulating matrix metalloproteinase and proinflammatory cytokine levels (e.g. growth-related oncogene, CX3CL1, FasL, etc.) [2].
stimulates activation and chemotaxis of human monocytes and monocyte-derived immature dendritic cells by mediating innate immune reactions [26]. cysLTs have a potent influence on vasopermeability, which may facilitate inflammatory cell or cytokine recruitment into arterial lesions [27]. A recent clinical study suggested that atorvastatin (80 mg/day) caused a nonsignificant decrease in serum LTB₄ levels [28]. It has been reported that fluvalastatin blocked the production of LTC₄ [29]. In accordance with the previous results, our data showed atorvastatin significantly downregulated the level of serum LTC₄. Inhibition of the LTD₄ receptor (cysLT1R) by montelukast abrogated vascular reactive oxygen species production and improves endothelial function and plaque stability [30]. Recently, 15-epi-lipoxin A₄ was proven to be an anti-inflammatory cytokine in the progression of atherosclerosis [31]. Interestingly, atorvastatin had no effect on serum 15-epi-lipoxin A₄ concentration in the study, which probably attributed to the relatively low dose of atorvastatin [32]. Platelet-activating factor lipids derived from oxidized LDL stimulate 5-LO expression in leukocytes, and is accompanied by biosynthesis of MCP-1 and LTB₄. Inhibition of MCP-1 results in a decline of LTB₄ production [33]. The metabolic products derived from the 5-LO pathway aggravates atherosclerosis. Taken together, all these factors contribute to plaque destabilization. Blockade of the 5-LO pathway attributed to the reduction in the number of macrophages in arterial lesions [18, 23]. A recent study by Ye et al. [31] has suggested that atorvastatin increases the phosphorylation of 5-lipoxygenase at Ser-523 by PKA. This phosphorylation prevents the translocation of 5-LO to the membranous fraction, thus inhibiting the interaction between 5-LO and cPLA2.

Instead, P-5-lipoxygenase interacts with COX2 to produce 15-epi-lipoxin A₄, a potent anti-inflammatory mediator. In this study, we found that atorvastatin treatment decreases LTD₄, FLAP and cysLT1R expression in atherosclerotic lesions, as well as attenuates carotid plaque vulnerability. Interestingly, a recent study showed that high dose simvastatin treatment induced over-expression of FLAP in patients’ muscle [34]. There are two probable explanations for the conflicting results: they could be attributable to the dosage forms of statins or species differences.

In conclusion, atorvastatin may attenuate the progression of atherosclerotic lesions by regulating the 5-LO pathway, which may provide a new interpretation of its pleiotropic effects. However, the exact mechanisms of these beneficial effects are unclear, thus warranting further studies.

Funding Sources

This study was supported by the National Natural Science Foundation of China (30870847) and Natural Science Foundation of Jiangsu province (BK2009319) to X.L., National Natural Science Foundation of China to G.X. (30870848) and China Postdoctoral Science Foundation (20080431415) and Jiangsu Postdoctoral Science Foundation (0802002B) to W.Z.

Acknowledgements

The authors thank Mrs. Chaoying Zhang for her help in collecting raw data and valuable comments on the manuscript. We are also grateful to Dr. Michael Chopp for copyediting the manuscript.

References

