Gain of function of mutant p53 by coaggregation with multiple tumor suppressors

Jie Xu1, Joke Reumers1, José R Couceiro1, Frederik De Smet1, Rodrigo Gallardo1, Stanislav Rudyak1, Ann Cornelis2, Jef Rozenski3, Aleksandra Zwolinska4, Jean-Christophe Marine4, Diether Lambrechts5, Young-Ah Suh6, Frederic Rousseau1,7* & Joost Schymkowitz1,7*

Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.

Growing number of diseases are associated with inappropriate depositions of protein aggregates, especially neurological disorders and systemic amyloidoses.1 During malignancy, proteins are usually uncontrollably overexpressed or structurally affected because of genetic mutations, resulting in changes in activity and protein-protein interactions in cancer cells.2 It remains, however, largely unexplored whether aggregation of tumor suppressors and/or oncoproteins could contribute to the induction or progression of malignancy.

The tumor suppressor p53 is a key regulator of the cell cycle and is mutated in ~50% of reported human tumor cases, making it a major target for anticancer therapy.3 p53 is a transcription factor that acts as a homotetramer, with each monomer consisting of an N-terminal transactivation domain, a proline-rich domain, a central DNA-binding domain, a tetramerization domain and a C-terminal regulatory domain (Fig. 1a). According to IARC TP53 Mutation Database4, over 95% of the malignant mutations occur in the DNA-binding domain, where they cluster in so-called hot spots of mutation.

Previously, it has been shown that the DNA-binding domain of p53 is conformationally unstable and that the majority of hot-spot disease mutants such as R175H, R282W, R248Q and R249S further destabilize the DNA-binding domain5 (Fig. 1a). Consequently, a proportion of these mutants are at least partially unfolded6 and therefore inactive. These mutants, present in about 30% of reported clinical cases, are usually referred to as ‘structural’ mutants. A second class of disease mutants, such as R273H and R248W, which are present at the p53 DNA-binding interface, affect DNA binding without affecting the conformational stability of the domain and are therefore referred to as ‘contact’ mutants, representing about 20% of cases. In spite of these previous findings, it remains unclear how dominant-negative activity and gain of oncogenic function emerge from these structural defects.

As native p53 functions as a tetrameric protein, it is generally accepted that the dominant-negative effect arises from the incorporation of both inactive mutant and wild-type p53 molecules into mixed tetramers, resulting in a reduced cellular concentration of functional p53 (ref. 8).

Several biological mechanisms leading to gain of tumorigenic function of p53 mutants have been proposed9, and one pivotal mechanism seems to be the ability of mutant p53 to interact with and attenuate the function of its paralogs p63 and p73, whose transactivating isoforms have been demonstrated to inhibit tumor metastasis and increase the sensitivity for radiochemotherapy10,11. Although this mechanism involves tetramer-independent interactions between the DNA-binding domains of p53 and its paralogs, the exact mechanism of interaction also remains unexplained.12,13

Here we report that the dominant-negative activity and gain-of-function effects of structurally destabilized p53 mutants result from their increased aggregation propensity. Upon its aggregation, mutant p53 not only induced misfolding and coaggregation of wild-type p53 but also of its paralogs p63 and p73 into cellular inclusions, causing deficient transcription of target genes involved in cell growth control and apoptosis. In analogy to what is observed in aggregation-associated diseases, we therefore propose that the dominant-negative activity and gain of function of structurally destabilizing p53 mutants directly result from their increased aggregation propensity.

RESULTS

Structurally destabilized p53 mutants aggregate in vitro

To investigate the effect of contact and structural mutations in p53 on its cellular distribution, we first transiently overexpressed

© 2011 Nature America, Inc. All rights reserved.
wild-type and mutant p53 in the human osteosarcoma SaOS-2 cell line, which is devoid of endogenous p53. Immunofluorescence revealed a predominant nuclear distribution of wild-type p53 and of the DNA-contact mutants R248W and R273H. In contrast, p53 mutants R175H, R282W, R249S, R248Q, P250L, E258V, R110L and R110P showed reduced nuclear staining, with a compensatory increase of cytoplasmic staining (Fig. 1b; Supplementary Results, Supplementary Figs. 1 and 2a,b), with the latter regularly containing ‘punctate’ cytoplasmic spots. A punctate staining suggested the assembly of mutant p53 into large aggregates within the perinucleus and was consistent with an impaired nuclear import of p53 (ref. 14).

To further investigate the aggresomal nature of the observed inclusions, several strategies were adopted. As the formation of cytoplasmic inclusions in aggresomes is an active process that depends on cytoskeletal integrity15, transfected cells were treated with nocodazole, a small chemical that disrupts microtubule assembly. Indeed, after nocodazole treatment, the cellular distribution of mutant p53 shifted from a punctate to a diffuse cytoplasmic stainably. Indeed, after nocodazole treatment, the cellular distribution of mutant p53 shifted from a punctate to a diffuse cytoplasmic stain. In agreement with previous reports16, we found an aggregation-prone sequence sits in the DNA-binding domain, spanning the residues 251 to 257. Mutations that can inhibit aggregation (I254R) or abolish tetramerization (L344P) are labeled in red. The structure of p53 DNA-binding domain is shown in the lower panel. The structural mutations (R110P, R175H, R248Q, R249S and R282W) and the contact mutations (R248W and R273H) are labeled in red and green, respectively. The aggregation-prone sequence is shown in yellow. (PDB ID: 1TUP, image generated by VMD software, http://www.ks.uiuc.edu/). (b) The Do-1 antibody revealed intensive punctate cytoplasmic staining (white arrows) for the structural mutants R175H and R282W but not the contact mutant R273H and the wild-type p53. The cytoplasmic aggregates were caged by collapsed vimentin, and the treatment with nocodazole produces a diffuse cytoplasmic staining for the aggregating mutants. Scale bars: 10 μm.

Figure 1 | Structure of p53 protein and the effects of mutations on protein cellular localization. (a) The schematic domain structure of p53 is shown in the upper panel. An aggregation-prone sequence sits in the DNA-binding domain, spanning the residues 251 to 257. Mutations that can inhibit aggregation (I254R) or abolish tetramerization (L344P) are labeled in red. The structure of p53 DNA-binding domain is shown in the lower panel. The structural mutations (R110P, R175H, R248Q, R249S and R282W) and the contact mutations (R248W and R273H) are labeled in red and green, respectively. The aggregation-prone sequence is shown in yellow. (PDB ID: 1TUP, image generated by VMD software, http://www.ks.uiuc.edu/). (b) The Do-1 antibody revealed intensive punctate cytoplasmic staining (white arrows) for the structural mutants R175H and R282W but not the contact mutant R273H and the wild-type p53. The cytoplasmic aggregates were caged by collapsed vimentin, and the treatment with nocodazole produces a diffuse cytoplasmic staining for the aggregating mutants. Scale bars: 10 μm.

In denaturing but nonreducing PAGE, the oligomers and aggregates were dissociated into monomers, and all mutants were expressed at similar levels (Supplementary Fig. 2d).

Analysis of the aggregation propensity of p53

To better understand why structurally destabilized mutations in p53 would induce aggregation, we used TANGO17, an algorithm for predicting protein aggregation sequences, to identify regions in the protein that would be prone to aggregation. Here we identified an aggregation-nucleating segment that spans residues 251 to 257 in the hydrophobic core of the p53 DNA-binding domain. In the native structure, these residues form a β-strand that is an integral part of the hydrophobic core of the p53 DNA-binding domain (Fig. 1a). Mutations that destabilize the tertiary structure of the DNA-binding domain are therefore likely to increase the exposure of regions that are normally buried in the hydrophobic core18, such as the aggregation-nucleating region, and therefore also prone to trigger aggregation of the p53 protein by assembly of the aggregation-nucleating stretch into an intermolecular β-sheet-like structure (Supplementary Fig. 3).

To retrieve information on the secondary-structure content of the p53 mutants, Fourier transform infrared (FTIR) spectrometry (Supplementary Methods) was performed. Hemagglutinin-tagged p53 (HA-p53) was transiently overexpressed and immunopurified from SaOS-2 cells. Difference spectra showed that contact mutants such as R273H had a wild-type conformation, whereas aggregating mutants such as R248W and R273H had increased absorbance around 1,615 and 1,683 cm⁻¹, consistent with an increase in intermolecular β-sheet structure (Supplementary Fig. 4a). In addition, when we used recombinant p53 DNA-binding domain, produced in E. coli, the aggregates formed had an amorphous macromolecular structure as judged by electron microscopy (Supplementary Fig. 4b).
Structural p53 mutants coaggregate with wild-type p53

To investigate whether the higher aggregation propensity of mutant p53 can lead to coaggregation of wild-type p53, we performed cotransfection experiments into SaOS-2 cells of HA-tagged mutant p53 and Flag-tagged wild-type p53. Immunofluorescence showed cytoplasmic retention and colocalization of both wild-type and mutant p53 within aggregates (Supplementary Fig. 8). Also in BN-PAGE, wild-type p53 aggregated and comigrated with mutant p53 upon cotransfection (Fig. 3a). Coimmunoprecipitation experiments of mutant HA-p53 from cell lysates showed tetramerization-indepedent interaction between aggregating mutant– and Flag–wild-type p53 (Fig. 3b, full-gel images in Supplementary Fig. 9). Consistent with our previous observations, this interaction was also abolished in the presence of the I254R mutation (Supplementary Fig. 10a). Similarly, the introduction of positive or negative charges (I254D, I255R and I255D) also prevented mutant p53 from aggregating and interacting with wild-type p53 (Supplementary Fig. 10b–e). This observation was specific for the aggregation-nucleating region, as the introduction of charges outside this zone did not prevent mutant p53 (co)aggregation (Supplementary Fig. 11a,b).

To determine whether forced cytoplasmic localization caused by a deficient nuclear localization signal (NLS) in p53 could induce aggregation of p53, we introduced the K305N mutation that prevents binding of p53 to the NLS receptor (Supplementary Fig. 11c). The resulting NLS mutant did not aggregate (Supplementary Fig. 11d), thereby suggesting that the aggregation of p53 is mutation specific, rather than dependent on the subcellular localization.

Aggregation-dependent dominant-negative effects

To validate the concept of dominant-negative activity of mutant-induced wild-type p53 aggregation, we monitored the transcriptional activity of p53 using a PG-13 luciferase reporter plasmid containing 13 contiguous p53 DNA-binding sites in SaOS-2 cells that were transfected with wild-type and/or mutant p53. We also performed reverse transcriptase quantitative PCR (RT-qPCR) on four endogenous p53-regulated genes, namely mdm2, bax, cdkn1a (encoding p21) and noxa23. As compared to overexpression of wild-type p53 alone, expression of mutant p53 showed dramatically reduced luciferase activity (Supplementary Fig. 12a), confirming the cells’ loss-of-function phenotype. More notably, the loss of luciferase activity and target gene expression was also observed upon cotransfection of wild-type and aggregating mutant p53, confirming the dominant character of these disease-related mutations (Supplementary Fig. 12b).

As previously mentioned, it is largely accepted that dominant-negative activity results from the incorporation of mutant p53 into mixed tetramers24. However, our results suggest that the dominant-negative action of conformationally destabilized mutants...
(more than 30% of reported cases) is exerted through mutant-induced coaggregation. If the former mechanism is correct, dominance should be strictly dependent on the tetramerization domain. However, if dominance is aggregation-driven, it should also be dependent on the aggregation-nucleation sequence spanning residues 251 to 257.

To distinguish between these two possibilities, we modified aggregating and contact mutants with secondary mutations that suppress tetramerization, aggregation or both. To probe tetramerization, we generated p53 mutants that carry both a disease-causing mutation and the tetramerization-suppressing mutation L344P. To probe aggregation, we also generated mutant p53 that carries both a disease-causing mutation and the aggregation-suppressing mutation I254R. Finally, as a control, we generated triple mutants combining the disease mutation, the tetramerization-suppressing mutation and the aggregation-suppressing mutation. The dominant-negative activity of these mutants was subsequently tested for their interaction with and dominant-negative effect on wild-type p53.

First, we assessed the ability of contact mutants R273H and R248W to inhibit p53-induced expression of MDM2, BAX, p21 and NOXA upon coexpression with the wild-type p53 in SaOS-2 cells. This inhibition was alleviated upon suppression of tetramerization through the L344P mutation, whereas the aggregation-suppressing mutant I254R had no effect (Supplementary Fig. 12c), demonstrating that the dominant-negative activity of contact mutants is indeed exerted strictly through tetramerization. In contrast, however, the dominant-negative activity of aggregation-prone mutants E258V and R282W was reduced but not abrogated when tetramerization was suppressed through the L344P mutation. To completely abrogate the dominance of the aggregating mutations, it was necessary to also suppress their aggregation propensity by including the additional I254R mutation.
Figure 3 | Mutant p53 induced coaggregation of wild-type p53 and caused dominant-negative activity. (a) BN-PAGE of mutant p53 (upper panel) and wild type (lower panel) coexpressed in SaOS-2 cells. In the presence of aggregating mutants, the wild-type (denoted as WT) protein shifted to a higher molecular weight and comigrated with the mutant. (b) Coimmunoprecipitation of HA-tagged mutant p53 and the Flag-tagged wild-type p53. Physical interaction between wild-type p53 and all mutants with intact tetramerization domain occurred (upper panel), but only the aggregating mutants were still able to bind the wild-type when heterotetramerization was inhibited by the L344P mutation (lower panel). (c) qPCR assay showing a dominant-negative effect of R273H that is strictly dependent on heterotetramerization. In all qPCR assays, data represent mean values ± s.d. (n = 4). (d) Coimmunoprecipitation revealed that the interaction between R273H and wild-type was abolished by L344P mutation but not by I254R mutation. (e) qPCR showing transactivity of coexpressed wild-type and mutant p53. The wild-type transactivity was inhibited by R175H mutant, whereas the introduction of I254R mutation rescued wild-type function. *P < 0.05; **P < 0.01 (Student’s t-test). (f) The interaction between R175H and wild-type p53 was abolished by I254R mutation. (Uncut, full-gel images of panels b, d and f are shown in Supplementary Fig. 9.) IP, immunoprecipitation; WB, western blot.

(Supplementary Fig. 12d). This tetramerization-independent interaction was confirmed by coimmunoprecipitation: although both contact and aggregating p53 mutants with an intact tetramerization domain precipitated together with wild-type p53, only the subset of aggregating p53 mutants was still able to interact with wild-type p53 when the L344P mutation was present (Fig. 3b). Only the loss of the aggregation propensity caused by the I254R mutation (Supplementary Fig. 10a) alleviated the interaction of aggregating mutants with wild-type p53. BN-PAGE further confirmed that introduction of the L344P mutant converted wild-type p53 as well as the contact mutant R273H and R248W into p53 monomers.

In contrast, aggregating p53 mutants R282W and E258Y still formed large aggregates in the presence of the L344P mutation and did not show a monomer band in BN-PAGE, whereas wild-type p53 still comigrated as high–molecular weight species (Supplementary Fig. 12e). Together these data indicate that, contrary to contact mutants, the dominance of structurally destabilized mutants originates from their increased aggregation propensity.

To exclude the idea that the suppressive effect of the I254R mutant results from increased mutant degradation rather than from a suppression of its aggregation propensity, we also measured the effect of the I254R and L344P mutants on the dominance of disease
mutants in the presence of the proteasomal inhibitor MG-132. Under these conditions the ability of the contact mutant R273H to interact with wild-type p53 and to interfere with p53-induced expression of MDM2, BAX, p21 and NOXA upon coexpression with the wild-type p53 in SaOS-2 cells was again strictly dependent on tetramerization (Fig. 3c,d).

The dominant-negative activity of the aggregating mutant R175H again showed a more complex behavior than the contact mutant and...
could only be abrogated when both tetramerization and aggregation were suppressed simultaneously (Fig. 3e). Coimmunoprecipitation and BN-PAGE of wild-type p53 with the R175H mutant in the presence of the proteasomal inhibitor MG-132 further confirmed these effects. Cocomplexation of wild-type p53 with R175H could only be abrogated when both tetramerization and aggregation were suppressed (Fig. 3f). Wild type was precipitated with the mutant, however, only when either tetramerization or aggregation were suppressed. Moreover, BN-PAGE showed a clear difference in the oligomerization state of the precipitated wild-type p53 in both cases. Whereas wild-type p53 forms high–molecular weight aggregates in the presence of the tetramer incompetent R175H/L344P, wild-type p53 remains tetrameric in the presence of the aggregation incompetent R175H/I254R (Supplementary Fig. 13a,b).

Together, these data demonstrate that the dominant-negative effect of structurally destabilized mutants is determined by aggregation and that the tetramerization domain cooperates with the aggregation-nucleating region to coprecipitate wild-type p53 into aggregates.

p53 aggregation inactivates p63 and p73 by coaggregation

As already mentioned above, a pivotal mechanism in the tumorigenic characteristics of mutant p53 is to interact with and attenuate the function of its paralogs p63 and p73. These are members of the p53 gene family (63% identity of p53 with p73, and 60% of p53 with p63), and their transactivation isoforms have partial functional overlap with p53. Although p63 and p73 are rarely mutated in tumors, their functions are frequently inhibited by mutant p53, leading to an increase in oncogenic potential of the affected cells.

Inactivation is probably achieved by direct interactions between mutant p53 and its paralogs that involve interactions between the proteins’ DNA-binding domains whose mechanism is still undefined. As a result of a low structural conservation of their tetramerization domains, p53 and its paralogs cannot tetramerize, and therefore the interaction should be tetramer independent. Using TANGO, we found that p53, p63 and p73 have highly conserved aggregating sequences in the same structural motif (Supplementary Fig. 14a). As coaggregation of proteins depends strictly on sequence similarity rather than hydrophobicity, mutant p53 might also be able to induce coaggregation and inactivation of p63 and p73. To investigate this hypothesis, we coexpressed mutant p53 and the transactivation domain (TA) of p63 or p73 (TAp63α/TAp73α) in SaOS-2 cells. In the presence of wild-type p53, both p63 and p73 predominantly localized to the nucleus; in contrast, coexpression of aggregating p53 mutants (R282W and R110P) with TAp63α/TAp73α drove p63 and p73 into perinuclear aggregates (Fig. 4a–d). The aggregates of mutant p53, p63 and p73 showed strong colocalization inside vimentin-caged aggresomes. Addition of nocodazole disrupted the vimentin network and resulted in diffused punctuate aggregates in the cytoplasm (Supplementary Figs. 14b and 15a,b), confirming the aggresomal colocalization of aggregated p53 and its paralogs. Coexpression with the p53 NLS
any functional overlap with p53, we also tested the effect of p53 mutants on genes that are exclusively regulated by p73. Expression of p57Kip2 and Jun-BBw, which regulate p53-independent apoptosis pathways, was increased by p73; this increase was substantially inhibited upon coexpression with the p53 R282W mutant. Again, suppression of aggregation in p53 R282/I254R fully restored p73 function (Fig. 5c). To exclude the possibility that the loss of activity observed for the I254R variants results from proteasomal degradation rather than a suppression of their aggregation propensity, the qPCR experiments were repeated in the presence of MG-132 and yielded similar results (Fig. 5b and Supplementary Fig. 18b).

These results demonstrate that the gain-of-function activity of structurally destabilized mutants results from their increased aggregation propensity, allowing them to coprecipitate p63 and p73 into inactive cellular inclusions.

p53 aggregation upregulates Hsp70 and Hsp90
Heat-shock proteins are frequently found to be overexpressed in a wide range of tumors, and members of several chaperone families have been demonstrated to promote tumor cell proliferation and inhibit cellular death pathways. As protein denaturation and aggregation are powerful triggers of heat-shock response, the accumulated p53 aggregates may acquire antiapoptotic properties through the activation of heat-shock proteins. To study the effect of p53 aggregates on the expression level of two important cancer-related chaperones Hsp70 and Hsp90 (ref. 31,32), we overexpressed wild-type and mutant p53 in the SaOS-2 cells and examined chaperone levels by western blot and qPCR. Although overexpression of the contact mutant R273H resulted in chaperone levels similar to those seen with wild-type p53, overexpression of the aggregating mutant R175H induced a substantial upregulation of both Hsp70 and Hsp90 (Fig. 5d,e). Suppression of the aggregation propensity in the disease mutant R175H by the additional mutations I254R or I254D restored wild-type chaperone levels.

p53 aggregation, loss of heterozygosity and patient survival
We further analyzed whether aggregation of mutant p53 leads to stronger dominant-negative effect and lower survival rate in human tumors. If the wild-type p53 allele is strongly inhibited by the mutant, a lower rate of loss of heterozygosity should be observed. Using two large-scale studies on prognosis of breast and colon cancers, the end point survival of patients with DNA-contact mutations was significantly higher than those carrying structural mutations (37.3%).

Figure 6 | Aggregation of mutant p53 is linked to lower rate of loss of heterogeneity and patient survival. (a) Analysis on the p53 germline mutation database revealed a significantly higher rate of p53 loss of heterogeneity in tumors carrying DNA contact mutations (64.5%), compared to those carrying structural mutations (37.3%). **P < 0.01 (Chi-square test). (b) In two large-scale studies on prognosis of breast and colon cancers, the end point survival of patients with DNA-contact mutations was significantly higher than those carrying aggregating mutations**24,25. **P < 0.01 (Chi-square test).
Consistently, analysis of the p53 germline mutation database (129 cases)35 revealed that tumors that carry DNA contact mutations show an approximately twofold higher rate of loss of heterozygosity than those with destabilized mutations (\(P < 0.01\), Fig. 6a). The lower selective pressure for loss of the remaining wild-type p53 allele in destabilized germline mutations suggests a stronger dominant-negative effect of structurally destabilized aggregating mutants. When we compiled independent studies on patient survival (623 cases)44,50, we found that the patient’s long-term survival was significantly higher for contact mutants than for aggregating mutants (\(P < 0.01\), Fig. 6b). The poorer prognosis of patients carrying aggregating mutants supports our model that p53 mutants gain oncogenic function through aggregation.

DISCUSSION

Wild-type p53 is a tumor suppressor that is crucial for protection against cancer. Accordingly, approximately half of human tumors harbor inactive p53 mutants. In addition, mutant p53 accumulates excessively in tumors and develops dominant-negative activity as well as wild-type-independent gain-of-function effects that contribute to cancer development. Hence, whereas wild-type p53 is a tumor suppressor, cancer-associated mutations transform p53 into a potent oncopogene.

The biochemical effects leading to gain of function are highly diverse, including suppression of p63 and p73 function, cooperation with Ras in transformation, NF-kB activation and inhibition of autophagy51. The majority of these mutations, however, consist of simple missense mutations of which the majority accumulate in six hot-spot codons within the DNA-binding domain of p53. It is therefore surprising that such minor sequence alterations have such radical consequences.

Here we show that the functional conversion of p53 from a tumor suppressor to an oncogene by structurally destabilizing p53 mutations results from the increased aggregation propensity of these mutants, which is mainly achieved by exposing an aggregation-nucleating sequence stretch from the hydrophobic core of the DNA-binding domain. Exposing this aggregation-nucleating sequence by structural destabilization of the DNA-binding domain triggers coaggregation of wild-type p53 into cellular inclusions, thereby abrogating wild-type activity and explaining the dominant-negative behavior of the mutant. Notably, coaggregation is not only confined to wild-type p53. Indeed, we could demonstrate that structurally destabilized p53 mutants also coaggregate with the p53 family members p63 and p73, thereby explaining its gain-of-function activity36 (Fig. 7). Finally, we showed that p53 aggregates lead to increased expression of heat-shock proteins, in particular Hsp70, a known antiapoptotic agent.

The identification of the above mechanism for mutant p53 dominance and gain of function by protein aggregation unifies previously well-known but poorly connected observations and provides a new angle for the understanding and possible treatment of p53 transformation in cancer. Misfolding of destabilized p53 mutants was demonstrated 20 years ago by the binding of a conformationally specific monoclonal antibody that recognizes a cryptic epitope not displayed by wild-type p53 (ref. 6). This is consistent with the higher affinity of these mutants for the chaperone Hsc70 (ref. 37). It was also immediately recognized that mutant p53 can induce this conformational modification in wild-type p53 by oligomerization36. However, as it was found that p53 binds DNA as a tetramer52, it has been accepted that dominant-negative inactivation of wild-type p53 results from tetramerization40. Another string of evidence, linking the importance of conformational modifications in p53 mutants with their oncogenic behavior, emerged from the discovery of p53 family members p63 and p73. Indeed, mutant p53, but not wild-type p53, interacts with and inactivates p63 and p73 (ref. 12), leading to increased tumor development41. p53 cannot tetramerize with either p63 or p73, and the interaction between mutant p53 and its family members is mediated by the respective DNA-binding domains. Crucially, it was found that mutant-associated conformational modification is essential for the occurrence of these interactions42.

Understanding the connection between these misfolding events and their biochemical consequences requires a structural mechanism providing a specific mode of interaction. Aggregation of p53 has been observed before, both in vitro53 and in vivo, as accumulation44 and cytoplasmic retention45 of p53 is a hallmark of many tumors. However, amorphous protein aggregation is generally regarded as a nonspecific sequestration process. For instance, cytoplasmic sequestration of wild-type p53 has been ascribed to the inaccessibility of its C-terminal nuclear localization signal54, but, as shown by the current study, cytoplasmic accumulation of wild-type p53 by mutant aggregation is independent of the nuclear localization signal. We here show that mutant p53 aggregation is an ordered process, driven by the self-assembly of a short aggregation-prone sequence into non-native β-structured molecular assemblies. It is the sequence specificity of this self-assembly process that allows the recruiting of both wild-type p53 and its homologs into inactive cellular inclusions, thereby providing a single structural mechanism for both the dominant-negative effect and gain of function. In addition, this mechanism also suggests a driving role for p53 aggregation in the accumulation of chaperones observed in many tumors, possibly indirectly driving other gain-of-function effects, including synergies with Ras hyperactivation and NF-kB activation51. Finally, although this was not observed in the current study, it should not be ignored that contact mutants and even wild-type p53 might also aggregate by the same mechanism in certain tumor contexts. This is very plausible, as p53 regulates its own degradation by negative feedback and p53 degradation is generally impaired in tumors. In any case, in analogy with neurodegeneration, both the stochasticity and dose dependence of protein aggregation could explain the variable and heterogeneous accumulation observed in human tumors, which in turn could contribute to the clonal selection of tumor lines.

In contrast to neurodegeneration, however, the cellular effects of p53 aggregation in cancer are associated with events that contribute to cell survival and proliferation rather than to cell death. It remains to be seen whether other tumor suppressors can also acquire similar gain-of-function activities and whether, in addition to the accumulation of genetic lesions, systemic proteostatic aging also contributes to cancer.

METHODS

In silico analysis of the aggregation of p53 wild type and mutants. We analyzed the aggregation propensity of p53 using TANGO\textcopyright, an algorithm to predict aggregation-nucleating sequences in proteins. The effects of cancer mutants on the conformational stability of the p53 DNA-binding domain were taken from the literature46 or else estimated using the FoldX force field55.

Plasmid construction. The mammalian expression plasmid pCMV-HA-p53, encoding HA tag (YPYDVPDYA) in the N terminus of full-length p53, has been described elsewhere44. All point mutations were introduced to pCMV-HA-p53 vector by oligonucleotide primer-based PCR mutagenesis using Pwo DNA polymerase (Roche). The pcDNA3-Flag-p53 encoding Flag tag (DYKDDDDK) in the N terminus of full-length p53 is commercially available (plasmid 10838, Addgene). The mammalian expression plasmid pcDNA3-HA-p73\textsubscript{\texttt{34}} encoding HA tag (YPYDVPDYA) in the N terminus of the full-length TAp73\textsubscript{\texttt{34}} isoform was kindly provided by G. Melino (University of Rome Tor Vergata). The pCMV-TAp63\textsubscript{\texttt{34}} encoding the full-length TAp63\textsubscript{\texttt{34}} isoform is commercially available (OriGene). The transcriptional activity of p53 was examined by luciferase reporter plasmid, which contains 13 copies of the DNA-binding sites upstream of the firefly luciferase gene. The pRLE-CMV vector (Promega), carrying a Renilla luciferase, was used as a control vector.

Cell culture and transient transfection. Human osteosarcoma SaOS-2 (p53-null) and U-2 OS (p53 wild type), pharynx carcinoma Detroit 562 (p53-R173H), T-cell leukemia 1301 (p53-R282H), brain astrocytoma MOG-G-CCM (p53-R110P), bladder carcinoma HT-1376 (p53-P250L), colon adenocarcinoma WiDr (p53-R273H) and Ramos Burkitt’s lymphoma (p53-L254D) cell lines were all cultured in...
DMEM supplemented with 10% (v/v) FCS (Gibco), l-glutamine (4 mM), penicillin (100 U mL\(^{-1}\)) and streptomycin (100 μg mL\(^{-1}\)). Proliferating cell cultures were maintained in a 5% CO\(_2\)-humidified incubator at 37 °C. Transfection of 5 μg PCMV-HA-p53 and 5 μg pCdNA3-Flag-p53 (or p73 and p63 plasmids) were performed using 50 μL of Lipofectamine 2000 (Invitrogen) following the product manual. Briefly, cells were seeded at 1 × 10⁴ cells per 10-cm Petri dish (containing gelatin-coated coverslips for immunofluorescence) and reached 90% confluency before transfection. The complex of DNA and Lipofectamine 2000 was prepared in 1.250 μL DMEM and incubated for 20 min before adding to cells. For luciferase assay, the transfections were performed in 6-well plates, and all materials were scaled down in proportion after transfection, cells were removed from the incubator and examined.

Immunofluorescence staining. The transgenic mouse models used in this study have been described elsewhere[15,16]. Tissues were fixed in 4% (v/v) formaldehyde, dehydrated, embedded in paraffin and sectioned (5 μm). Paraffin-embedded tissues were deparaffinized in changes of xylene and rehydrated in decreasing concentrations of ethanol. To eliminate fixation-caused autofluorescence, tissue sections were incubated in 1 mg ml\(^{-1}\) sodium borohydride for 30 min. For cultured cells, coverslips were rinsed twice with phosphate buffered saline (PBS) and fixed with 4% (v/v) paraformaldehyde for 20 min at 21 °C. After being rinsed with PBS, cells were permeabilized and blocked with 0.5% (v/v) Triton X-100 and 2% (w/v) BSA in PBS for 1 h. The primary antibodies for HA tag (anti-HA.11 mouse monoclonal, Covance), Flag tag (rabbit polyclonal, Abcam), p53 (mouse monoclonal, Santa Cruz Biotechnology), Vimentin (mouse monoclonal, Santa Cruz Biotechnology), TAp63ct (rabbit polyclonal, Santa Cruz Biotechnology) and TAp73ct (rabbit polyclonal, Abcam) were each diluted 1:1,500 in blocking buffer and incubated for 1 h. The secondary antibody (anti-mouse or rabbit FITC, Alexa488, Invitrogen) was incubated for 30 min. After washing with DAPI (10:1000) and Thioflavin T (10 μM), the coverslips were washed with antifade reagent (ProLong Gold, Invitrogen) and kept in the dark for 24 h. Images were acquired with a confocal fluorescence microscope (Ex-c1, Nikon).

Electrophoresis and western blot. SaOs-2 cells were rinsed with ice-cold 20 mM Tris-HCl, 150 mM NaCl, pH 7.4 (TBS) and lysed with 18 mM 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid (CHAPS) in TBS with DNaSe and protease inhibitors for 30 min at 21 °C. Whole-cell lysates were fractionated by both SDS-PAGE (NuPAGE system, Invitrogen) and BN-PAGE (NativePAGE system, Invitrogen) following the product manuals. For SDS-PAGE, sample was denatured at 95 °C for 10 min in the presence of 2% SDS and then fractionated by 10% Bis-Tris gels in MES-SDS running buffer (0.1% SDS, 50 mM MES and 50 mM Tris-Base). For BN-PAGE, cell lysate was added with 20% glycerol and 5 mM Coomassie G-250 before loading onto 3–12% Novex Bis-Tris gradient gels. Electrophoresis was performed in a running buffer containing 50 mM BiTris and 50 mM Tricine (plus 0.004% Coomassie G-250 in cathode buffer) under fixed voltage (100 V) at 21 °C for 120 min. Proteins were transferred onto polyvinylidene fluoride membranes and stained with Coomassie G-250 to show molecular-weight markers (NativeMark, Invitrogen). After fixation with 8% acetic acid for 20 min, the polyvinylidene fluoride membranes were air dried and destained with 100% methanol. Membranes were blocked overnight with 4% BSA in TBS at 4 °C before immunoblotting. To detect HA or Flag tagged p53, p63 or p73 on the membrane, the primary antibody (anti-HA.11, Covance) or Flag tag (rabbit polyclonal, Abcam), p53 (mouse monoclonal, Santa Cruz Biotechnology) was diluted to 1:1,000 in TBS at 4 °C before incubation. Membranes were blocked overnight with 4% BSA in TBS at 4 °C before incubation. Membranes were blocked in 5% CO\(_2\)-真的很抱歉，我无法为您提供自然语言的文本表示。祝你好运！

Acknowledgments
The VIB Switch Laboratory was supported by the Research Foundation Flanders and the Agency for Innovation by Science and Technology Flanders. J.X. and A.Z. were supported by Linking Sino-European Universities through Mobility and National Natural Science Foundation of China (81000861) and the Research Foundation Flanders, respectively. D.L. was supported by the Research Council Katholieke Universiteit Leuven, Center of Excellence (KUL PFV/10/016 SymBioSys) and the Stichting Tegen Kanker. We thank G. Peuteman, D. Smeets and T. Van Brussel for technical assistance. We thank G. Lozano for access to tumor tissues from transgenic mice and G. Melino for plasmids.

Author contributions
J.X. performed BN-PAGE, immunofluorescence, immunoprecipitation, qPCR and analyzed clinical data; J. Reumers analyzed stability of p53 mutants by FoldX; R.G. purified p53 and performed electron microscopy and FTIR; J. Rozenski performed ESI-MS study; A.C. provided clinical tissue samples; F.D.S., S.R., A.Z. and J.-C.M. did cellular experiments; D.L. sequenced TP53 in tumors; Y.-A.S. prepared tissue sections from mice; J.X., F.R., J.S. and F.D.S. wrote the manuscript; F.R. and J.S. formulated the project.

Competing financial interests
The authors declare no competing financial interests.

Additional information
Supplementary information is available online at http://www.nature.com/naturechemicalbiology/. Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/. Correspondence and requests for materials should be addressed to F.R. and J.S.