Rebuilding the balance of STAT1 and STAT3 signalings by fusaraside, a cerebroside compound, for the treatment of T-cell-mediated fulminant hepatitis in mice

Xing-Xin Wua,1, Yang Suna,*, Wen-Jie Guoa, Yan-Hong Gub, Xue-Feng Wua, Ren-Xiang Tana, Qiang Xua,*

a State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
b Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

A R T I C L E I N F O

Article history:
Received 15 June 2012
Accepted 9 August 2012
Available online 15 August 2012

Key words:
Fusaraside
Concanavalin A
Liver injury
STAT1
STAT3

A B S T R A C T
dysregulation of signal transducer and activator of transcription (STAT) signaling is usually associated with intricate immune diseases and rebuilding the balance of STAT1 and STAT3 signaling is being explored as a useful approach for the treatment of these diseases. However, few chemicals have been reported to rebuild the balance of these two signalings for immune hepatitis therapy. In the present study, we found that fusaraside, a new kind of cerebroside isolated from an endophytic fungus Fusarium sp. IFB-121 in Quercus variabilis, significantly ameliorated concanavalin A (Con A)-induced T-cell-mediated fulminant hepatitis in mice, which was closely associated with the improvement of histopathological parameters, inhibition of activation of liver CD4+ T cells and NKT cells, regulation of balance of Th1/Th2/Th17/Treg cytokines and protection of hepatocyte from apoptosis. Moreover, T-cell proliferation and activation was also notably inhibited by fusaraside in vitro. Furthermore, the protective effect of fusaraside was attributable to a novel regulatory mechanism through down-regulating STAT1 activation and T-bet expression in liver CD4+ T cells and up-regulating STAT3 activation and Bcl-
expression in hepatocytes. In conclusion, fusaraside exhibited its capability against T-cell-mediated liver injury in vivo, through rebuilding the balance of STAT1 and STAT3 signalings. These results suggest that fusaraside is potentially useful for the treatment of T-cell-mediated human liver disorders.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Janus kinase-signal transducer and activator of transcription factor (JAK-STAT) signaling pathway, activated by more than 40 cytokines and growth factors, plays an important role in the control of a wide variety of biological processes. Dysregulation of JAK/STAT signaling was usually associated with various human diseases, such as immune disorders and tumorogenesis [1,2]. A body of reports has demonstrated that many inflammatory diseases involve the nonrestrictive activation of the cytokine-JAK-STAT pathway [3–10]. The inhibition and/or enhancement of activation of various STAT family members could ameliorate the severeness of the diseases. For example, IFN-γ/STAT1 had been proved essential for CD4+ T-cell activation in Con A-induced liver injury model, because such activation was markedly attenuated in IFN-γ-/- or STAT1-/- mice [11–13]. In contrast to STAT1, IL-6/STAT3 signaling played a protective role by inducing the anti-apoptotic protein expression in the progress of many diseases [12,14,15]. Different STAT members are activated by distinct group of cytokines and a wide variety of STAT signaling involve in the pathogenesis of the same disease, which made it difficult to regulate specifically and properly in the progress of diseases. There is much evidence for the pathogenesis of various inflammatory diseases due to the imbalance of STAT1 and STAT3 signalings [3–9]. Therefore, rebuilding the balanced STAT1 and STAT3 signalings might be a useful approach for the treatment of these intricate immune diseases.

Cerebroside are a group of glycosphingolipids and made up of essential components of various tissues and organs in biological systems. Chemically, they are composed of a hexose and a ceramide moiety, which usually consists of a long-chain aminoacohol trivially called ‘sphingoid base’ (=sphingosine or sphingol) and an amide-linked long-chain fatty acid. Biologically, they are structural support and texture determinants of cell membranes, and act most likely through protein binding as mediators of biological events, such as activation, cell agglutination, intracellular communication and cell development. Moreover, they play essential biological roles in cellular membranes as cell surface antigens or receptors. A growing pile of evidence has indicated that cerebroside possess a broad range of biological
functions, all being potentially related to the common amphipathic and/or ionophoretic nature of this type of molecules [16]. Besides those chemically new and/or bioactive constituents from various endophytic fungi [17–19], we have extended our attention to the cerebrosides constituents abundant in fungal cells. Co-bioassays with immunosuppressive tests showed that the chloroform–methanol (1:1) extract from the culture of *Fusarium sp.* sp., an endophytic fungus in *Quercus variabilis* Bl., was significantly bioactive in the mixed lymphocyte reaction. Subsequently, a novel cerebroside compound fusarisure from the above chloroform–methanol (1:1) extract was obtained and its antibacterial and xanthine oxidase inhibitory activities were demonstrated [20]. Furthermore, our preliminary study found that fusarisure possessed an immunosuppressive activity in vitro. The purpose of this study, thus, was to report a novel strategy for immune hepatitis therapy involving rebuilding the balance of STAT1 and STAT3 signalings by means of this small molecule.

2. Materials and methods

2.1. Mice

Specific pathogen-free, 8- to 10-week-old female C57BL/6 mice were purchased from Model Animal Genetics Research Center of Nanjing University (Nanjing, China). Animal welfare and experimental procedures were carried out strictly in accordance with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health, USA) and the related ethical regulations of our university. All efforts were made to minimize animals’ suffering and to reduce the number of animals used.

2.2. Drugs, reagents and antibodies

Fusarisure (the chemical structure is shown in Supplementary Fig. S1), with 99.2% of purity, was isolated from an endophytic fungus *Fusarium sp.* IFB-121 in *Q. variabilis* [20], without bacterial contaminants. Cyclosporin A (CsA) (Sandoz Ltd., Basel, Switzerland), Concanavalin A (Con A), carboxyfluorescein diacetate succinimidyl ester (CFSE), and mitomycin C were purchased from Sigma–Aldrich. All chemicals were purchased from Beijing Bioengineering Institute (Nanjing, China). Acrylamide and bis-acrylamide were purchased from Sangon Co. Ltd. (Shanghai, China). Ac-DEVD-pNA was purchased from Alexis (San Diego, CA). RPMI 1640 and fetal calf serum were purchased from Invitrogen (Carlsbad, CA). Dithiothreitol (DTT), Triton X-100, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and HEPES were purchased from Sigma–Aldrich (St. Louis, MO). ELISA kits for IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-17A and IL-10 were purchased from R&D systems (Minneapolis, MN). Murine cytokines IFN-γ and IL-6 were purchased from Peprotech (Rocky Hill, NJ). PE-anti-mouse CD4 mAb (GK1.5) was purchased from ebioscience (San Diego, CA). FITC-anti-mouse CD69 mAb (H1.2F3) and FITC-anti-mouse CD3 mAb (17A2) were purchased from Biolegend (San Diego, CA). Anti-β2- pdb, purified anti-mouse CD3 (145-2C11), and purified anti-mouse CD28 (37.51) were purchased from BD Pharimings (San Diego, CA). Anti-STAT1 (9H2) and phospho-STAT antibody sampler kit were purchased from Cell Signaling (Beverly, Massachusetts). Anti-T-bet (H-210) and anti-α tubulin (TU-02) were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Mouse T-cell enrichment column was purchased from R&D system Minneapolis, MN. Mouse CD4 (L3T4) MicroBeads were purchased from Miltenyi (Auburn, CA). In situ TUNEL Cell Death detection kit was purchased from Roche Applied Science (Mannheim, Germany). Light Shift Chemiluminescent EMSA kit was purchased from Pierce (Rockford, IL). All other chemicals were purchased from Sigma–Aldrich (St. Louis, MO).

2.3. Con A-induced hepatitis in mice: drug treatment schedules, transaminase assay and histological analysis

Acute liver injury was induced by injecting C57BL/6 mice with Con A in pyrogen-free phosphate buffered saline (PBS) at 15 mg/kg via the tail vein [21]. C57BL/6 mice were administrated intraperitoneally for 3 times at an interval of 8 h with fusarisure or CsA suspended in PBS at different doses. One hour after the final administration, 15 mg/kg of Con A was injected intravenously to induce the liver damage. In control animals, the same dose of PBS was given before Con A injection. Mice were killed at the indicated time points, and blood samples, livers and spleens were collected. Serum alanine transaminase (ALT), aspartate transaminase (AST) and lactic dehydrogenase (LDH) activities were measured by commercial kits as the protocols indicated. Portion of livers from individual mice were fixed in 10% formaldehyde and embedded in paraffin. The tissue sections were stained with hematoxylin–eosin for morphological evaluation and read on a 0–3 scale (0, no change; 1, mild; 2, moderate; and 3, severe) by a pathologist who had no prior knowledge of the induction of liver injury or other experimental data.

2.4. Isolation of liver mononuclear cells and hepatocytes

Mouse liver mononuclear cells and hepatocytes were isolated as described previously [22]. In brief, the livers of the mice were first perfused in situ via the portal vein with Ca²⁺ and Mg²⁺ free Hank’s balanced salt solution (HBSS) supplemented with 0.5 mM EGTA and 25 mM HEPES at 37 °C. Then, the buffer was replaced with 0.1% collagenase solution in HBSS (containing 4 mM CaCl₂ and 0.8 mM MgSO₄). After a few minutes of perfusion, the liver was excised rapidly from the body cavity and dispersed into cold HBSS. The cell suspension generated was filtered through a 100 µm mesh. After washing twice, the pellets were resuspended in RPMI 1640 medium containing 10% fetal calf serum (FCS). The supernatant obtained after isolating the above parenchymal cells was used for preparation of nonparenchymal cells by centrifugation at 300 × g for 10 min. In some cases, the nonparenchymal cell suspensions were overlaid on Percoll gradient solutions consisting of 25%, 50% and 80% Percoll and then centrifuged at 600 × g for 20 min. The resulting layers which appeared between 25% and 50% or between 50% and 80% of Percoll were named as Fraction A and Fraction B, respectively. Then, Fraction A was confirmed to be about 88–94% of Kupffer cells and Fraction B was the lymphocyte-enriched populations. Cells in the different layers were collected and washed three times with RPMI 1640 medium.

2.5. Preparation of spleen cells and purification of T cells

The spleen cell preparation and T-cell purification were performed as previously described [23]. Mouse CD4⁺ T cells from splenocytes were purified using magnetic beads (Miltenyi) with more than 95% purity as assessed by flow cytometric analysis. The cells were incubated in RPMI 1640 medium supplemented with 100 U/ml of penicillin, 100 µg/ml of streptomycin and 10% fetal calf serum under a humidified 5% (v/v) CO₂ atmosphere at 37 °C.

2.6. Flow cytometric analysis of T-cell activation in the liver after administration of Con A

Mice were killed 0, 2, 5 and 8 h after Con A administration and liver mononuclear cells were isolated. Activation of CD4⁺ T cells
was determined by anti-CD4 plus anti-CD69 (early activation marker) or anti-CD3 plus anti-FasL using a FACS Calibur (Becton-Dickinson, San Jose, CA). The data were analyzed using CellQuest software (BD Immunocytometry Systems).

2.7. Cytokine assay

The cytokines in the cell supernatant or in serum were determined using ELISA kits for IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-17A and IL-10 from R&D systems (Minneapolis, MN).

2.8. Western blot analysis

Western blot was done as described before [24]. Briefly, the cells were collected and lysed in lysis buffer containing protease inhibitor (protease inhibitor cocktail, Pierce). The proteins were fractionated by SDS-PAGE and electrotransferred to PVDF membranes. Different antibodies were used for blotting, and detection was done by LumiGLO chemiluminescent system (KPL, Guildford, UK).

2.9. Determination of STAT1 DNA binding by electrocrophoretic mobility shift assay (EMSA)

Nuclear extracts of the cells were subjected to EMSA assay as described before [25]. In brief, the cells (1 x 10⁷) were collected and lysed in 500 µl of lysis buffer A (HEPES 10 mM (pH 7.9), MgCl₂ 1.5 mM, KCl 10 mM, DT 0.5 mM and PMSF 1 mM) for 10 min at 4 °C. Then 100 µl of 10% NP40 were added. After 20 min incubation at 4 °C, the pellets were obtained by centrifugation at 280 x g for 5 min and washed by buffer A twice. Then, the pellets were lysed in 50 µl of lysis buffer B (HEPES 20 mM (pH 7.9), MgCl₂ 1.5 mM, NaCl 420 mM, Glycerol 25%, EDTA 0.2 mM, DT 0.5 mM and PMSF 1 mM) for 30 min at 4 °C. The supernatants obtained by centrifugation at 1200 x g for 5 min were nuclear extracts. The double-stranded oligonucleotide probe containing a gamma-activated sequence (GAS) (5’-biont-AGGGCTTTTCCCCAGAATGAGG-3’ and 5’-biont-GGCGTGTCAGCGAGGCAATCGAGCT-3’) corresponding to the STAT1 consensus DNA-binding site, was obtained from Invitrogen (Carlsbad, CA). Reactions for nuclear protein-DNA binding were performed using the Light Shift Chemiluminescent EMSA kit. Specificity of DNA-protein complex was confirmed by competition with a 100-fold excess of unlabeled GAS binding sequences (Invitrogen, Carlsbad, CA).

2.10. Single mixed lymphocyte reaction

Single mixed lymphocyte reaction was performed as described before [26]. The lymphocytes (5 x 10⁵) from C57BL/6 mice, which had been treated with mitomycin C (500 µg/ml) for 1 h, were co-cultured with the lymphocytes (5 x 10⁵) from BALB/c mice (Model Animal Genetics Research Center of Nanjing University, Nanjing, China) in the presence or absence of the various concentrations of the drug at 37 °C in 5% CO₂ for 72 h. The proliferation of the lymphocytes from C57BL/6 mice was measured by MTT method. The value of OD₅₇₀ was determined by an ELISA reader and the stimulation index was counted as following formula: stimulation index = (ODsample - OD₅₇₀c57BL/6 alone)/OD₅₇₀BALB/c alone.

2.11. Caspase-3 activity assay

Mice were killed at 2, 5, and 8 h after Con A administration, and caspase 3-like activity was measured in liver homogenates using Ac-DEVD-pNA as a substrate (Alexis biochimicals) [27].

2.12. Statistical analysis

Data are presented as mean ± SEM. The data were analyzed by one-way ANOVA with Student–Newman–Keuls (SNK) post hoc analysis. A value of P < 0.05 was considered to be significant.

3. Results

3.1. Fusarumide ameliorated Con A-induced T-cell-mediated liver injury in mice

The chemical structure of fusarumide is cerebroside-like (molecular weight = 751; Supplementary Fig. S1). The purity of fusarumide was confirmed to be 99.2% by a high performance liquid chromatography assay. Con A-induced T-cell-mediated hepatitis in mice was used to evaluate the immunosuppressive effect of fusarumide in vivo. Intravenous administration of Con A significantly resulted in a time-dependent increase in serum ALT level. The ALT value began to increase at 4 h after Con A administration compared with naive group, reached a peak at 8 h, and declined thereafter. Compared with the vehicle control, fusarumide pretreatment significantly decreased the ALT level at 8 h and 24 h (Fig. 1A). Furthermore, at 8 h after Con A injection, fusarumide pretreatment dose-dependently reduced ALT, AST and LDH serum levels, among which 5 mg/kg of fusarumide showed the same intensity of inhibition with 10 and 20 mg/kg (Fig. 1B). In this case, 10 mg/kg of fusarumide showed a stronger inhibition than the same concentration of cyclosporine A, especially in ALT level. The histological examination of liver sections showed a massive necrosis with cytoplasmic swelling, inflammatory infiltration and severe hepatocyte degeneration in the Con A-treated mice without medication (Fig. 1C). Against these changes, pretreatment with fusarumide markedly reduced the extent of liver damage, and in the group treated with 20 mg/kg of fusarumide, only minor degenerative changes were observed. The detailed histological changes were shown in Supplementary Table 1. Notably, there was no significant difference in the weight and cell numbers of lymphoid tissues (thymus, spleen and lymph nodes) between the mice intraperitoneally injected with fusarumide (20 mg/kg) daily for 7 days and the mice treated with normal saline (data not shown), suggesting the safety of fusarumide to some degree.

3.2. Fusarumide inhibited the activation of liver CD4⁺ T cells and NKT cells in Con A-injected mice

CD69 expression was determined by flow cytometric analysis as the early activation marker of liver lymphocyte activation. As shown in Fig. 2A and B, Con A caused a significant increase in CD4⁺CD69⁺ double-positive cells (upper-right quadrant) with a peak almost at 5 h after Con A administration. Compared with the vehicle control, fusarumide completely abolished the increase in the numbers of liver T cells expressing CD69 (Fig. 2A and B). It has been shown that NKT cells are rapidly activated and consequently depleted after administration of Con A [28]. As shown in Fig. 2C and D, injection of Con A led to significant depletion of NKT cells (NK1.1⁺CD3⁺ double-positive cells in upper-right quadrant) 2 h after Con A treatment in vehicle-treated mice, but not in fusarumide-treated mice. In the pre-experiment, we found that the drug concentration in the serum of mice with intraperitoneally administered 10 mg/kg of fusarumide thrice a day reached a peak at about 4.5 µM by a high performance liquid chromatography assay. It was important to note that fusarumide at the concentrations (1–50 µM) in vitro did not affect T lymphocyte’s viability by MTT uptake assay (Fig. 5F) and annexin V-propidium iodide assay (Fig. 5G). These results suggest that the inhibition of fusarumide on
the activation of liver CD4+ T cells and NKT cells is not due to a cytotoxic activity.

3.3. Fusaraside modulated the cytokine profiles in Con A-induced hepatitis in mice

Th1/Th2 and Th17/Treg balance are critical for the maintenance of immune homeostasis. To determine whether the regulation of pro- and anti-inflammatory cytokines by fusaraside contributed to the amelioration of Con A-induced liver injury, the effects of fusaraside on the serum levels of Th1, Th2, Th17 and regulatory cytokines were examined. The productions of Th1 cytokine IFN-γ, TNF-α and IL-2 as well as Th17 cytokine IL-17A were significantly inhibited by fusaraside, while the productions of Th2 cytokine IL-4 and IL-6 were not markedly altered (Fig. 3). In addition, regulatory cytokine IL-10 was remarkably increased by fusaraside in vivo (Fig. 3). It should be noted that the percentage of Treg cell population in liver lymphocytes was increased with the treatment of fusaraside in the Con A-induced liver injury (Supplementary Fig. S2). These findings suggest the imbalance of Th1/Th2 and Th17/Treg is recovered by fusaraside in Con A-induced T-cell-mediated fulminant hepatitis. Moreover, the mRNA expressions of IFN-γ, TNF-α, IL-2 and T-bet in the injury liver tissue were also reduced by fusaraside in a dose-dependent manner in vivo (Supplementary Fig. S3). Furthermore, the mRNA expressions of IFN-γ, TNF-α, IL-2 and T-bet (Supplementary Fig. S4) as well as IFN-γ production (Supplementary Fig. S5) of splenic CD4+ T cells induced by Con A were also inhibited by fusaraside in a concentration-dependent manner in vitro.

3.4. Fusaraside inhibited STAT1/T-bet signaling in CD4+ T cells in vivo and in vitro

To further analyze the mechanism by which fusaraside inhibits the production of IFN-γ, we examined the STAT1/T-bet signaling in CD4+ T cells in vivo and in vitro. Con A injection rapidly induced the expression of T-bet as well as the phosphorylation of STAT1 in liver CD4+ T cells with the peak at 1–3 h and the elevations were gradually reduced thereafter. Against the elevations, fusaraside administration showed a significant inhibition on the phosphorylated STAT1 in liver CD4+ T cells from mice injected with Con A in a time-dependent manner (Fig. 4A). In consistent with the inhibition of STAT1 activation, fusaraside also inhibited the DNA binding activity of STAT1 (Fig. 4B). As a downstream molecule of STAT1 signaling, Th1-specific transcription factor T-bet was also suppressed by fusaraside in vivo (Fig. 4A) and in vitro (Fig. 4C).
3.5. Fusaruside inhibited proliferation and activation of murine splenic T cells in vitro

Since STAT1/T-bet signaling was reduced by fusaruside, we wonder whether fusaruside inhibited T-cell proliferation and activation in vitro. As a result, fusaruside significantly inhibited splenic T-cell proliferation induced by both Con A (Fig. 5A) and anti-CD3 plus anti-CD28 (Fig. 5B and D) in a dose-dependent manner. A similar inhibitory effect of fusaruside was also seen in the mixed lymphocyte reaction (Fig. 5C). Moreover, fusaruside dose-dependently reduced CD69 expression (Fig. 5E) of T cells activated by Con A. It was important to note that fusaruside at the concentrations mentioned above did not affect T lymphocyte's viability by MTT uptake assay (Fig. 5F) and annexin V-propidium

Fig. 2. Fusaruside suppressed the activation of liver CD4+ T cells and NKT cells in Con A-injected mice. C57BL/6 mice were injected with Con A in the presence or absence of 20 mg/kg fusaruside pretreatment. (A) Hepatic lymphocytes were isolated at 2, 5 and 8 h later, respectively. The surface expression of CD4+CD69+ was analyzed by flow cytometry. The panels shown here are representatives of three independent experiments. (B) Values are shown as mean ± SEM from three mice at each time point. *P < 0.05 and **P < 0.01 vs. corresponding Con A-treated vehicle control groups at the same time points. (C) Hepatic lymphocytes were isolated at 2 h after Con A treatment. The surface expression of CD3+NK1.1+ was analyzed by flow cytometry. The panels shown here are representatives of three independent experiments. (D) Values are shown as mean ± SEM from three mice. *P < 0.05 vs. corresponding Con A-treated vehicle control group.

Fig. 3. Fusaruside modulated the cytokine profiles in Con A-induced hepatitis in mice. C57BL/6 mice were injected with Con A in the presence or absence of 20 mg/kg fusaruside pretreatment. The sera were collected at 3 h after Con A injection and determined by ELISA. Data are presented as mean concentration (pg/ml ± SEM) of 5 mice. *P < 0.05, **P < 0.01 vs. Con A group.
iodide assay (Fig. 5G). These results also indicate that the inhibition of fusaruside on T-cell proliferation and activation is not due to a cytotoxic activity.

3.6. Fusaruside enhanced and prolonged STAT3 activation and Bcl-X_L expression in hepatocytes and protected hepatocyte from apoptosis

As shown in Fig. 6A and B, Con A administration caused a time-dependent increase in caspase-3 activation and activity. Pretreatment with 10 mg/kg of fusaruside significantly reduced caspase-3 activation and activity in hepatocytes in a time-dependent manner. Consistent with the data in caspase-3, the TUNEL staining assay also showed the reduction of apoptosis in hepatocytes from the fusaruside-treated group against those from vehicle-treated group (Fig. 6C). Interestingly, this compound significantly enhanced and prolonged the expressions of phosphorylated STAT3 and Bcl-X_L in hepatocytes (Fig. 6D). Moreover, the enhancement in phosphorylated STAT3 and Bcl-X_L was also seen in IL-6-stimulated hepatocytes treated with fusaruside in vitro (Fig. 6E). These results suggest that enhancing and prolonging STAT3 activation and Bcl-X_L expression in hepatocytes by fusaruside accounts for the amelioration of liver injury induced by Con A.

4. Discussion

Many studies have documented that STATs are important and essential to modulate various inflammatory diseases [3–10]. The STAT1 and STAT3 signaling pathways play a key pathogenic role in T-cell-mediated hepatitis and the down-regulation of STAT1 signaling has been shown to prevent or terminate the development of the inflammation, which suggests that the regulation of STATs activation may be a useful approach for the treatment of T-cell-mediated immune diseases [11,12]. However, only a few drug candidates have been reported working through such regulations of STATs so far. In this study we provided experimental evidence of an in vivo therapeutic effect for fusaruside in a murine model of T-cell-mediated liver injury. As a result, we found the unique characteristics of fusaruside on the modulation of STAT1, STAT3 and their downstream signalings, which were distinct from the present immunosuppressants, such as antimetabolites and glucocorticoids.

In the present study, we first investigated the in vivo effect of fusaruside in a Con A-induced T-cell-dependent murine model of hepatitis, which is considered to be an appropriate model for mimicking human immunomodulated liver diseases [21,29]. The biochemical and histopathological data indicated that pretreatment with fusaruside was sufficient to protect mice from Con A-induced liver damage (Fig. 1). The activation of CD4⁺ T cells also plays a critical role in Con A-induced hepatitis [12,21]. In this study, CD4⁺ T-cell activation as well as the serum levels of Th1 cytokines, such as IFN-γ, TNF-α, IL-2 and Th17 cytokine IL-17A, were markedly attenuated by fusaruside (Figs. 2 and 3). This effect was of relevance, because IFN-γ and TNF-α might alone or synergistically cause a direct cytotoxic effect on hepatocytes in vitro [30,31]. In order to elucidate how fusaruside exerted its protective effect, we next examined the effect of fusaruside on STAT1, STAT3 and their regulating proapoptotic and antiapoptotic proteins in the Con A-induced hepatitis in mice. It has been well known that STAT1 and STAT3 play a critical role in regulating the progress of the inflammation including hepatitis [12] and ischaemia/reperfusion injury [32]. In Con A-induced liver failure, IFN-γ-induced activation of STAT1 has been demonstrated to play a harmful role by activating CD4⁺ T cells and NKT cells, along with directly inducing the hepatocyte death. Additionally, T-bet, a Th1 specific transcription factor, is regulated by STAT1 [33,34] and plays a haurful role in Con A-induced hepatitis through directly inducing hepatocyte death by the activation of CD4⁺ T cell, because the disruption of T-bet gene abrogated the elevated ALT activity and necrosis [11]. In contrast, IL-6-induced activation of STAT3 protected mice against Con A-induced liver injury by the suppression of IFN-γ signaling and induction of Bcl-X_L, which could protect hepatocytes against cell death induced by many
Fusaruside inhibited proliferation and activation of murine splenic T cells. Spleen cells were prepared from naïve C57BL/6 mice and T cells were purified using commercial enrichment columns. Mouse CD3+ T cells were stimulated with 5 μg/ml of Con A (A) or plate-bound anti-CD3 (10 μg/ml)/soluble anti-CD28 (1 μg/ml) (B) or mixed lymphocyte reaction (C) in the presence of 1–10 μM fusaruside for 72 h and cell proliferation was measured by MTT uptake. (D) Spleen cells were prepared from naïve mice and CD4+ T cells were purified using commercial MACS columns. Mouse CD4+ T cells (2 × 10^5/well) from C57BL/6 mice were labeled with 2.5 mM CFSE for 10 min, then they were stimulated with anti-CD3 (10 μg/ml) plus anti-CD28 (1 μg/ml) in the presence of fusaruside for 96 h. The proliferation of CFSE-labeled CD4+ T cells was evaluated using flow cytometry. Data are one of three independent experiments with similar results. (E) Mouse CD3+ T cells were stimulated with 5 μg/ml of Con A in the presence of fusaruside for 24 h and CD69 expression was measured by flow cytometry. Data are one of three independent experiments with similar results. (F) Mouse CD3+ T cells were treated with various concentrations of fusaruside for 24 h and cell viability was measured by MTT assay. Data are shown as mean ± SEM from three independent experiments. (G) Mouse CD3+ T cells were treated with various concentrations of fusaruside for 24 h and apoptosis was measured by annexin V-propidium iodide assay. Data are one of three independent experiments with similar results.

hepatotoxins, including CCl4, TNF-α, alcohol and Fas ligand [35,36]. In the present study, Con A administration rapidly triggered the activations of STAT1 and STAT3 with the peak effect occurring at 1–3 h. Selectively, fusaruside pretreatment time-dependently attenuated the STAT1 activation and T-bet expressions in liver CD4+ T cells (Fig. 4A), but significantly enhanced and prolonged STAT3 activation and Bcl-XL expression in hepatocytes from Con A-treated mice (Fig. 6D). To further confirm the regulation on STAT1/T-bet and STAT3/Bcl-XL signaling, we isolated primary CD4+ T cells and hepatocytes and examined the effect of fusaruside in vitro, respectively. As the result, fusaruside notably repressed T-bet expression in IFN-γ-activated CD4+ T cells (Fig. 4C) whereas significantly upregulated Bcl-XL expression in IL-6-activated hepatocytes (Fig. 6E) in a dose-dependent manner. Consequently, resembling its in vivo effect, fusaruside also induced the specific loss of STAT1 activation and enhancement of STAT3 activation in vitro. It has been proved that intravenous application of the lectin Con A in mice induced T-cell-mediated liver damage with necrosis and hepatocyte apoptosis [21,29]. As a result of protective effect of fusaruside, hepatocyte apoptosis and caspase-3 activity in the injured liver were also inhibited in fusaruside-pretreated mice (Fig. 6A–C). All the findings suggest that fusaruside protects mice.
Fig. 6. Fusaruisde protected hepatocyte from apoptosis through enhancing STAT3 activation and Bcl-XL expression. (A) Fusaruisde time-dependently reduced caspase-3 activation in hepatocytes from Con A-induced liver injury mice. The hepatocytes from Con A-treated vehicle control and fusaruisde (20 mg/kg)-pretreatment mice were analyzed by Western blotting. The data shown here are representatives of three independent experiments. (B) Fusaruisde down-regulated caspase-3 activity of hepatocytes. The hepatocytes from Con A-treated vehicle control and fusaruisde (20 mg/kg)-pretreatment mice were analyzed by caspase-3 activity analysis. *P < 0.05, **P < 0.01 vs. corresponding Con A-treated groups at the same time point. (C) Fusaruisde protected hepatocyte from apoptosis in vivo. TUNEL assay was done according to the manufacturer’s instructions. The nuclei of hepatocytes in each group were stained with DAPI. Original magnification, 100 x. (D) Fusaruisde enhanced STAT3 activation and Bcl-XL expression in hepatocytes in vitro. The hepatocytes from Con A-treated vehicle control and fusaruisde (20 mg/kg)-pretreatment mice were analyzed by Western blotting. The bands were measured and quantified by ImageQuant analysis and the values are shown as mean ± SEM from three independent experiments at each time point. *P < 0.05, **P < 0.01 vs. corresponding Con A-treated vehicle control groups at the same time points. (E) Fusaruisde enhanced STAT3 activation and Bcl-XL expression in hepatocytes in vitro. The primary hepatocytes isolated from naive C57BL/6 mice were cultured with fusaruisde for 3 h, then treated with murine IL-6 for 30 min (detection of pSTAT3) or 6 h (detection of Bcl-XL). After the incubation, proteins were extracted and assessed by Western blotting. Values are shown as mean ± SEM from three independent experiments. *P < 0.05, **P < 0.01 vs. IL-6-treated group.

from liver injury by recovering the balance between IFN-γ/STAT1 and IL-6/STAT3 signalings, which exerts a mutual functional antagonism role in T-cell-induced hepatitis.

This is the first time, to our knowledge, that evidence has been presented for the bidirectional regulation of STAT1 and STAT3 by a small molecule compound, which revealed a potential strategy for the therapy of T-cell-related diseases by regulating the balance of STAT signalings. STATs are a family of nuclear proteins mediating the actions of numerous cytokines. Among them, STAT1 plays a critical role in the signal transduction pathway of IFN-γ, STAT1 cascade is one major signaling pathway converting the IFN-γ signal into gene expressions, such as T-bet, Fas receptor, caspases, inducible nitric oxide synthase, cyclooxygenase, and intercellular adhesion molecules, all of which are critically involved in different pathologies correlated to the inflammatory process. Thus, STAT1 may potentially be claimed as a new molecular target of an anti-inflammatory treatment [37]. As far as it concerns, few natural compounds have been reported targeting the inhibition of STAT1. For example, green tea polyphenol epigallocatechin-3-gallate inhibited IFN-γ-elicited STAT1 activation but had no effect on IL-6-elicited STAT3 activation [38,39]. The peroxisome proliferator-activated receptor γ agonist 15-deoxy-A12,14-prostaglandin J2 (15dPGJ2) exhibited a strong anti-STAT1 as well as anti-STAT3 activities [40]. On the other hand, STAT3 has been demonstrated to be an anti-apoptotic signaling factor in T-cell-mediated hepatitis [12] and ischemia/reperfusion injury [32]. One feasible way to ameliorate
the inflammation is to recover the balanced STAT signaling by enhancing STAT3 activation. However, there is no corresponding drug candidate except cytokine cardiotoxin-1 [41]. Up to now, to our knowledge, there is no report on a small compound that bidirectionally regulating STAT1 and STAT3. Therefore, we demonstrated that fusaricide fulfilled its immunosuppressive effect on T-cell-mediated hepatitis by downregulating STAT1 whilst upregulating STAT3 and their respective downstream signaling. Previously, the immunosuppressant fludarabine and the glucocorticoid dexamethasone also inhibited STAT1 activation via suppressing STAT1 expression at the mRNA level [42,43]. Nevertheless, fusaricide worked through inhibiting the phosphorylation of STAT1, without influencing the total STAT1 expression, which is distinct from the above immunosuppressants in down-regulating STAT1 activity. As a result, by displaying a usual character, fusaricide might have significant advantages for the treatment of immune diseases, including hepatitis.

In conclusion, fusaricide can effectively protect mice from Con A-induced liver injury through inhibiting proinflammatory immune response in T cells and preventing hepatocyte from apoptosis, contributing to rebuilding the balance between STAT1 (in inflammatory T cells) and STAT3 (in hepatocytes) signalings. The protective effect of fusaricide on T-cell-mediated immune responses through the cytokine and cytokine-mediated STAT signaling modulation also suggests that the study of this compound might provide a new and specific approach for developing novel immunomodulatory drugs distinct from the present immunosuppressants, such as antimetabolites and glucocorticoids.

Conflict of interest

The authors have no financial conflicts of interest.

Acknowledgments

This work was supported by Science Fund for Creative Research Groups of NSFC (No. 81121062), National Natural Science Foundation of China (Nos. 90913023, 81173070 and 91129728), Production-Science-Research Forward-looking Project of Jiangsu Province (BY2010138), and National Science & Technology Major Project (No. 2012ZX09304-001).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at [dx.doi.org/10.1016/j.bcp.2012.08.006].

References

