Serum preadipocyte factor-1 is increased in fetuses of pregnancy complicated with severe preeclampsia

Qunyan Zhou, Jie Li, Hanzhi Wang, Cong Han, Ting Tian, Qiuyuan Zhu, Hefeng Huang, Minyue Dong *

Women’s Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Genetics, Ministry of Education, China

ARTICLE INFO

Article history:
Received 26 April 2013
Received in revised form 6 June 2013
Accepted 17 June 2013
Available online 26 June 2013

Keywords:
Preeclampsia
Preadipocyte factor-1
Fetus
Metabolic diseases

ABSTRACT

Background: Preadipocyte factor-1 (Pref-1), an inhibitor of adipocyte differentiation, is increased in fetal blood of small for gestational age (SGA) and is considered a factor involved in determining adiposity and associated with high risk of metabolic diseases in adulthood. Preeclampsia is a condition closely associated with SGA, however, the alteration of Pref-1 in fetuses of preeclamptic pregnancy remains unknown. The aims of the current investigation were to clarify the alteration of serum Pref-1 in fetuses of preeclamptic pregnancy and to explore possible role of Pref-1 in metabolic diseases in late life.

Methods: Cord blood samples were taken at birth from 45 fetuses of normal pregnancy, 16 of gestational hypertension, 29 of mild preeclampsia and 29 of severe preeclampsia. Serum Pref-1 concentrations were measured with ELISA.

Results: There were significant differences in cord blood Pref-1 and neonatal birth weight among normal pregnancy, gestational hypertension, mild and severe preeclampsia (F = 8.557, \textit{P} < 0.001 for Pref-1; \textit{F} = 38.405, \textit{P} < 0.001 for birth weight). Serum Pref-1 was significantly higher while birth weight were lower in severe preeclampsia than normal pregnancy, gestational hypertension and mild preeclampsia respectively (\textit{P} < 0.001 for all). However, either serum Pref-1 or birth weight did not significantly differ among normal pregnancy, gestational hypertension and mild preeclampsia (\textit{P} > 0.05 for all). Fetal Pref-1 concentration was significantly negatively correlated with birth weight (R^2 = 0.175, \textit{P} = 0.027 for severe preeclampsia; R^2 = 0.209, \textit{P} < 0.001 for preeclampsia; R^2 = 0.25, \textit{P} < 0.001 for all subjects).

Conclusions: Increased serum Pref-1 was demonstrated in fetuses of preeclampsia-complicated pregnancy, and it may be proposed that Pref-1 is among the possible mediators leading to high risk of metabolic diseases in adulthood.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Preeclampsia, affecting 5–7% of pregnancies, manifests maternal hypertension and proteinuria in the second half of pregnancy, and is pathologically characterized by shadow invasion of trophoblast cells into the spiral arteries of the placenta, small placenta and inadequate placental perfusion [1,2]. Small placenta, low placental perfusion and subsequently under-nutrition and inadequate oxygen supply of fetus lead to low birth weight in preeclamptic pregnancies [1,2]. Preeclampsia caused substantial preterm delivery, which subsequently leads to low birth weight [1,2]. It has been well demonstrated that low birth weight is associated with high risk of metabolic diseases including hypertension, carotid atherosclerosis and mortality caused by coronary heart disease or stroke in adulthood [3]. On the other hand, series of investigations revealed that the offspring of preeclamptic pregnancies had significantly higher blood pressure in childhood, adolescence and adulthood as compared to those of normotensive pregnancies [4–6]. The offspring of preeclamptic women have increased blood pressure during childhood and adolescence, pulmonary and systemic vascular dysfunction during adolescence, and nearly double the risk of stroke in later life [4–6]. The effect of intrauterine exposure to preeclampsia on adiposity remains controversial, but some investigations revealed that male offspring of preeclampsic pregnancy had higher BMI, waist circumference, subscapular skinfold thicknesses and body fat percentage than male offspring of normal pregnancy [7].

The mechanisms underlying this association remained unclear. Hormones may be one of the potential mediators. Very recently, Zegher et al. [8] reported that soluble preadipocyte factor 1 (Pref-1), a factor that inhibits adipocyte differentiation, was significantly increased in neonates of small for gestational age (SGA) at birth, and proposed that increased Pref-1 concentration in early life is involved in determining the adipocyte numbers, the variation of fat tissues in the later life and subsequently metabolic diseases.

Low birth weight is one of the characteristics of preeclampsia [1,2] and offspring of preeclamptic women are at high risk of metabolic
diseases [4–6], however, the association behind remains largely unknown. We hypothesized that circulating Pref-1 concentration may be changed in fetuses of preeclamptic pregnancies. To verify our hypothesis, we determined Pref-1 concentrations in blood samples taken from neonates at birth born to preeclamptic and normal pregnancies.

2. Materials and methods

2.1. Subjects

This cross-sectional investigation was conducted in Women’s Hospital, School of Medicine, Zhejiang University, with the approval from Institutional Review Board, and informed consents obtained from all participants. In the current investigation, 58 women with preeclampsia and 16 women with gestational hypertension were recruited and 45 normally pregnant women served as control. Among the preeclamptic women, 29 were diagnosed with severe preeclampsia and 29 mild. All subjects were nulliparous Chinese women.

Pregnancy was diagnosed upon positive human chorionic gonadotropin test after missed menstruation. Gestational age was calculated by menstrual dating. Ultrasound was performed to confirm pregnancy and the gestational age. Preeclampsia was diagnosed and classified according to strict criteria recommended by ACOG [9]: a systolic blood pressure ≥ 160 mmHg or diastolic blood pressure ≥ 110 mmHg with either a urine dipstick showing $3 +$ or $4+$ in a random urine sample or ≥ 5.0 g of proteinuria over 24 h. Other evidence of severe disease included increased serum creatinine, eclampsia, pulmonary edema, oliguria (\(<500\) ml/24 h), fetal growth restriction, oligohydramnios and symptoms suggesting significant end-organ involvement (headache, visual disturbance, or epigastric or right upper quadrant pain). Women who met criteria of preeclampsia but not severe preeclampsia were diagnosed mild preeclampsia.

Exclusion criteria were multiple gestation, diabetes mellitus, chronic hypertension, infectious diseases recognized in pregnancy, premature rupture of membrane, active labor, polyhydramnios and signs of other concurrent medical complication. The women in control group had no concurrent medical complication. The women in control group had no concurrent medical complication.

2.2. Sample collection and assay

Blood samples were taken from umbilical vein immediately after the delivery of baby. Blood samples were centrifuged after standing at room temperature for at least 30 min. Serum was separated and aliquoted in $-80\degree C$ until assayed. Pref-1 concentrations were measured with a commercially available human Pref-1 ELISA (R&D System, Minneapolis, MN).

2.3. Statistical analysis

Data were tested by Kolmogorov–Smirnov test for their distribution. Normally distributed data were presented in mean ± SD and compared by Student’s t test or one-way ANOVA. Category data were compared with chi-square test and the correlation was analyzed with regression analysis. Statistic package SPSS (Statistical Analysis System, Chicago, IL) was used for data analysis. A P < 0.05 was considered to be statistically significant.

3. Results

Table 1 showed the clinical data. There was significant difference in maternal age among normal pregnancy, gestational hypertension, mild and severe preeclampsia ($F = 6.687, P = 0.002$) but there was no significant correlation between Pref-1 concentration and maternal age. As expected, there were significant differences in gestational age at delivery ($F = 72.509, P < 0.001$) and neonatal birth weight ($F = 45.591, P < 0.001$). Gestational age at delivery was significantly shorter in preeclampsia than normal pregnancy and gestational hypertension ($P < 0.001$ for both, Bonferroni test), but was not significantly different between normal pregnancy and gestational hypertension. There was no significant difference in fetal gender among three groups ($x^2 = 4.442, P = NS$), however, the difference in the prevalence of SGA fetuses was significant ($x^2 = 37.72, P < 0.001$).

As shown in Table 1, there were significant differences in neonatal birth weight among normal pregnancy, gestational hypertension, mild and severe preeclampsia ($F = 38.405, P < 0.001$). The birth weight was significantly lower in severe preeclampsia than normal pregnancy, gestational hypertension or mild preeclampsia respectively ($P < 0.001$ for all). However, the birth weight did not significantly differ among normal pregnancy, gestational hypertension and mild preeclampsia. There were significant differences in cord blood Pref-1 among normal pregnancy, gestational hypertension, mild and severe preeclampsia ($F = 8.557, P < 0.001$). Neonatal serum Pref-1 was significantly higher in severe preeclampsia than normal pregnancy, gestational hypertension and mild preeclampsia. There were significant differences in cord blood Pref-1 among normal pregnancy, gestational hypertension, mild and severe preeclampsia (Fig. 1) ($F = 8.557, P < 0.001$). Neonatal serum Pref-1 was significantly higher in severe preeclampsia than normal pregnancy, gestational hypertension and mild preeclampsia. In the four groups, there was no significant difference of the neonatal serum Pref-1 between male and female fetus. In severe preeclampsia, fetal Pref-1 concentrations did not differ between SGA (30.33 ± 11.21, n = 16) and AGA (26.48 ± 8.37, n = 13) fetuses ($t = 0.274, P = NS$). However, Pref-1 concentration was significantly negatively correlated with birth weight in severe preeclampsia ($R^2 = 0.175, P < 0.001$) or mild and severe preeclampsia ($R^2 = 0.209, P < 0.001$), even in all subjects ($R^2 = 0.25, P < 0.001$).

4. Discussion

Very recently, Zegher et al. [8] reported that soluble Pref-1 is abundantly present in fetal circulation, and, at birth, SGA fetuses have significantly higher serum concentrations of Pref-1 than control fetuses. These authors proposed that soluble Pref-1 is one of the mediators for

<table>
<thead>
<tr>
<th></th>
<th>Normal pregnancy</th>
<th>Gestational hypertension</th>
<th>Mild preeclampsia</th>
<th>Severe preeclampsia</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>45</td>
<td>16</td>
<td>29</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Maternal age (y)</td>
<td>28.6 ± 3.4</td>
<td>31.8 ± 4.7</td>
<td>30.8 ± 5.0</td>
<td>30.3 ± 5.2</td>
<td>$F = 6.687, P = 0.002$</td>
</tr>
<tr>
<td>Gestational age at delivery (w)</td>
<td>38.70 ± 1.37</td>
<td>38.29 ± 1.90</td>
<td>34.07 ± 3.29</td>
<td>33.01 ± 2.75</td>
<td>$F = 72.509, P < 0.001$</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3251 ± 370</td>
<td>3429 ± 641</td>
<td>3065 ± 792</td>
<td>1792 ± 773</td>
<td>$F = 38.405, P < 0.001$</td>
</tr>
<tr>
<td>Fetal gender (male/female)</td>
<td>21/24</td>
<td>5/11</td>
<td>16/13</td>
<td>18/11</td>
<td>NS</td>
</tr>
<tr>
<td>SGA fetuses</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td>$x^2 = 37.72, P < 0.001$</td>
</tr>
</tbody>
</table>
Reduced adipocyte differentiation in fetus and subsequently reduced lipid storage capacity in adulthood, and vulnerability to metabolic diseases [8]. In the current investigation, we revealed, for the first time, that fetuses of mothers with severe preeclampsia had an increased serum Pref-1 concentration at birth as compared with those born to normal pregnancy, gestational hypertension and mild preeclampsia, meanwhile, the birth weight was also significantly lower in severe preeclampsia group compared with normal pregnancy, gestational hypertension and mild preeclampsia. Furthermore, correlation analysis revealed that Pref-1 concentration was negatively correlated with birth weight, indicating that the increased serum Pref-1 in fetuses of severe preeclamptic pregnancy is likely due to relatively low birth weight. Reduced blood supply to placenta, restricted growth and subsequently low birth weight are the common characteristics of fetal growth restriction and preeclampsia. In the publication of Zegher et al. [8], the etiology of SGA was not described, that usually means at least most cases of the SGA had no obvious causes. Taken together, the findings of the current study and Zegher et al. [8] indicated that fetal Pref-1 is a marker of fetal growth, while growth restraint, whether idiopathic or preeclampsia-induced, enhanced the Pref-1 concentrations in the circulation.

Pref-1 is a transmembrane protein that is encoded by an imprinted (paternally expressed) gene and that contains an extracellular domain with epidermal growth factor-like repeats; TNF-α-converting enzyme-mediated juxtamembrane cleavage generates a soluble 50-kDa form, which is the soluble form of Pref-1. Pref-1, highly expressed in preadipocytes but decreasing during the differentiation of adipocytes and absent in mature adipocytes, reflects the degree of adipocyte differentiation in vitro and in vivo and thus is used as a preadipocyte marker [10,11]. Soluble Pref-1 prevents lipid accumulation and expression of adipocyte transcription factors such as PPAR-γ and C/EBP-α as well as late adipocyte markers (including fatty acid synthase (FAS), stearoyl-coenzyme A desaturase (SCD), and fatty acid binding protein 4 (FABP4/aP2)) by upregulating Sox9 in preadipocytes, suggesting Pref-1 inhibits adipocyte differentiation [12].

Transgenic mice over-expressing soluble form of Pref-1 as an hFc-fusion protein in adipose tissue have been generated using the FABP4/aP2 promoter. These transgenic mice showed a marked decrease in body weight, adipose tissue mass (renal fat pad, inguinal fat pad, parametrial fat pad, epididymal fat pad) and cell size of adipocytes, and reduced expression of adipocyte markers (C/EBPα, aP2, FAS and SCD) and adipocyte-secreted factors (leptin, adiponectin and resistin) [13,14]. Over-expression of soluble Pref-1 also induced the alteration in glucose homeostasis and dyslipidemia. The mice expressing Pref-1/hFc presented increased concentrations of blood glucose, decreased glucose clearance rate, overt insulin insensitivity, hyperglycemia, hypertriglyceridemia, and hyperinsulinemia.

Data from in vivo studies with Pref-1 transgenic mice models are consistent with in vitro studies, and these findings strongly demonstrated that Pref-1 inhibits adipogenesis and subsequently lead to impaired glucose tolerance, insulin resistance and dyslipidemia. It has been well documented that impaired glucose tolerance, insulin resistance and dyslipidemia are high risk factors for metabolic diseases such as diabetes, hypertension and cardiovascular diseases. Based on the above-mentioned findings, it could be proposed that Pref-1 may be among the mediators linking intrauterine exposure to preeclampsia with high risk for metabolic diseases in late life. However, the role of Pref-1 in the increased risk of metabolic diseases in offspring of preeclampsia-complicated pregnancy needs more clinical observation and in vivo investigations.

The increased fetal Pref-1 in severe preeclampsia is possibly due to relatively low birth weight, however, the reasons of increased fetal Pref-1 remains unknown. Pref-1 is highly expressed in preadipocyte but whether preadipocyte is the main source of soluble Pref-1 is not clear, and the regulation of fetal and maternal Pref-1 in pregnancy needs investigation. Unpublished data of ours showed that mean maternal Pref-1 concentration, approximately 1/25 that of fetus, is much lower than that of fetus, which confirmed the report of Zegher et al. [8]. Our primary data revealed that placental expression of Pref-1 did not significantly differ between preeclampsia and normal pregnancy. These findings support the proposal of Zegher et al. [8] that fetal soluble Pref-1 is of fetal origin. However, the exact mechanisms by which increased Pref-1 lead to high risk of metabolic diseases need further investigation.

Acknowledgements

This study was financially supported by National Basic Research Program of China (2012CB944903) and National Science Foundation of China (81170512).

References

