Total colorings of planar graphs without chordal 6-cycles

Bing Wanga,b, Jian-Liang Wub,\ast, Hui-Juan Wangb

a Department of Mathematics, Zaozhuang University, Shandong, 277160, China
b School of Mathematics, Shandong University, Jinan, 250100, China

\begin{abstract}
A total k-coloring of a graph G is a coloring of \(V(G) \cup E(G) \) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number of G is the smallest integer k such that G has a total k-coloring. In this paper, it is proved that if G is a planar graph with maximum degree \(\Delta \geq 7 \) and without chordal 6-cycles, then the total chromatic number of G is \(\Delta + 1 \).
\end{abstract}

\section{Introduction}

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for the terminologies and notations not defined here. Let G be a graph. We use \(V(G) \), \(E(G) \), \(\Delta(G) \) and \(\delta(G) \) (or simply \(V \), \(E \), \(\Delta \) and \(\delta \)) to denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively.

A total k-coloring of a graph G is a coloring of \(V \cup E \) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number \(\chi''(G) \) of G is the smallest integer k such that G has a total k-coloring. Clearly, \(\chi''(G) \geq \Delta + 1 \). Behzad [1] and Vizing [14] posed independently the following famous conjecture, which is known as the total coloring conjecture (TCC).

\textbf{Conjecture A.} For any graph G, \(\Delta + 1 \leq \chi''(G) \leq \Delta + 2 \).

This conjecture was confirmed for general graphs with \(\Delta \leq 5 \). For its history, readers can see [19]. For planar graphs, the only open case is \(\Delta = 6 \) (see [8,11]). Interestingly, planar graphs with high maximum degree allow a stronger assertion, that is, every planar graph with high maximum degree \(\Delta \) has a total (\(\Delta + 1 \))-coloring. This result was first established in [3] for \(\Delta \geq 14 \), which was extended to \(\Delta \geq 12 \) [4], \(\Delta \geq 10 \) [15], and finally to \(\Delta \geq 9 \) [9]. Recently, Shen and Wang [12] proved that if G is a planar graph with \(\Delta = 8 \) and G contains no chordal 5-cycles or no chordal 6-cycles, then \(\chi''(G) = \Delta + 1 \). Wang and Wu [17] proved that if G is a planar graph with \(\Delta \geq 7 \) and every vertex is incident with at most one triangle, then \(\chi''(G) = \Delta + 1 \). Wang and Wu [18] proved that if G is a planar graph with \(\Delta \geq 7 \) and without 4-cycles, then \(\chi''(G) = \Delta + 1 \) (later, it is extended to \(\Delta \geq 6 \) by Shen and Wang [13]). Wang et al. [16] proved that if G is a planar graph with \(\Delta \geq 7 \) and without chordal 5-cycles, then \(\chi''(G) = \Delta + 1 \). In this paper, we obtain that if G is a planar graph with \(\Delta \geq 7 \) and without chordal 6-cycles, then \(\chi''(G) = \Delta + 1 \). To prove the result, we first establish various structural properties of G. Relying on these properties, we use the discharging method in the detailed proof to obtain a contradiction.

\ast This work is supported by the National Natural Foundation of China (No. 11271006) and the Natural Science Foundation of Shandong Province (ZR2012AL08).

\ast Corresponding author. Tel.: +86 53187906969; fax: +86 053188364654.

E-mail addresses: jlwu65@sina.com, jlwu@sdu.edu.cn (J.-L. Wu).

http://dx.doi.org/10.1016/j.dam.2014.02.004

0166-218X/© 2014 Elsevier B.V. All rights reserved.
2. Main result and its proof

We will introduce some more notations and definitions here for convenience. Let \(G = (V, E, F) \) be a plane graph, where \(F \) is the face set of \(G \). For a vertex \(v \in V \), let \(N(v) \) denote the set of vertices adjacent to \(v \), and let \(d(v) = |N(v)| \) denote the degree of \(v \); and for a face \(f \), the degree of a face \(f \), denoted by \(d(f) \), is the number of edges incident with it, where each cut-edge is counted twice. A \(k \)-vertex, a \(k^+ \)-vertex or a \(k^- \)-vertex is a vertex of degree \(k \), at least \(k \) or at most \(k \), respectively. Similarly, a \(k \)-face or a \(k^+ \)-face or a \(k^- \)-face is a face of degree \(k \) or at least \(k \), respectively. Let \(n_t(v) \) be the number of \(t \)-vertices adjacent to a vertex \(v \), and \(f_k(v) \) the number of \(k \)-faces incident with \(v \). Especially, let \(f_3(v) = t \). Let \(v_1, v_2, \ldots, v_d \) be neighbors of \(v \) in an anticlockwise order. Let \(f_i \) be face incident with \(v, v_i \) and \(v_{i+1} \), for all \(i \) such that \(i \in \{1, 2, \ldots, d\} \). Note that all the subscripts in the paper are taken modulo \(d \). For convenience, \((d_1, d_2, \ldots, d_d) \) denotes a cycle (or a face) whose boundary vertices are of degree \(d_1, d_2, \ldots, d_d \) in the anticlockwise order. Specially, \((i, j^+, k^-) \)-face is a \(3 \)-face \(uvw \) such that \(d(u) = i \leq j \leq d(v) \leq k \leq d(w) \).

Theorem 1. Let \(G \) be a planar graph without chordal 6-cycles. If \(\Delta \geq 7 \), then \(\chi''(G) = \Delta + 1 \).

Proof. In [12], Theorem 1 was established for \(\Delta = 8 \). So we assume that \(\Delta = 7 \). Let \(G \) be a minimal counterexample to Theorem 1 in terms of the number of vertices and edges, respectively. Then every proper subgraph of \(G \) has a total-8-coloring, but \(G \) is not. We first show some known properties on \(G \).

(a) \(G \) is 2-connected and the boundary of each face in \(G \) is exactly a cycle (see [5]);
(b) The subgraph \(G_{27} \) of \(G \) induced by all edges joining 2-vertices to 7-vertices is a forest (see [3,5]);
(c) \(G \) contains no edge \(uw \) with \(\min\{d(u), d(v)\} \leq \lfloor \frac{\Delta}{2} \rfloor \) and \(d(u) + d(v) \leq \Delta + 1 \) (see [5]);
(d) \(G \) contains no 3-face incident with more than one 4-vertex (see [10]);
(e) If \(v \) is a 7-vertex of \(G \) with \(n_2(v) \geq 1 \), then \(n_4(v) \geq 1 \) (see [6]).

Lemma 2. \(G \) contains no configurations depicted in Fig. 1, where the vertices marked by \(\bullet \) have no other neighbors in \(G \).

Proof. The proof that \(G \) contains no configurations depicted in Fig. 1(1,2,4,5) can be found in [7]. The proof that \(G \) contains no configuration depicted in Fig. 1(3) and (6) can be found in [5,16], respectively.

Lemma 3. \(G \) contains no configurations depicted in Fig. 2, where the vertices marked by \(\bullet \) have no other neighbors in \(G \).

Proof. Suppose that \(G \) contains a configuration depicted in Fig. 2(1). Then \(G' = G - vv_2 \) has a total-8-coloring \(\psi \) with the color set \(C = \{1, 2, \ldots, 8\} \) by the minimality of \(G \). Erase the color on \(v_2 \). For a vertex \(x \in V(G) \), let \(C(x) = \{\psi(xy) : y \in N(x)\} \). First, we consider \(v_2 v_3 \) as follows. If \(|C(v_2) \cup C(v_3)| < 7 \), then we can color \(v_2 v_3 \) with a color in \(C \setminus (\{\psi(v)\} \cup C(v_2) \cup C(v_3)) \). Otherwise, without loss of generality (WLOG), we assume that \(\{\psi(vv_1), \psi(vv_2), \psi(vv_3), \psi(vv_4), \psi(vv_5), \psi(vv_6), \psi(vv_7)\} = \{1, 2, 3, 4, 5, 6, 7, 8\} \). Then we obtain a total-8-coloring of \(G \) by coloring \(vv_2 \) with a color in \(\{5, 6, 7\} \setminus C(v_2) \), and coloring \(vv_2 \) with 3. Otherwise, if \(\psi(vv_4) = 1 \), then we exchange the colors of edges \(v_2 v_3 \) and \(vv_4 \), color \(vv_2 \) with 2. Otherwise, we exchange the colors of edges \(v_1 v_2 \) and \(vv_4 \), color \(vv_2 \) with 1 and color \(vv_3 \) with 3. Hence we obtain a total-8-coloring \(\psi' \) of \(G \) in which \(v_2 \) is uncolored.

Now we begin to recolor \(v_2 \). Let \(\alpha \) be the color on \(v_2 v_3 \) and \(D = C(v_2) \cup \{\alpha, 8\} \cup \{\psi(x) : x \in N(v_2)\} \). If \(|D| < 8 \), then we obtain a total-8-coloring of \(G \) by coloring \(v_2 \) with a color in \(C \setminus D \), a contradiction. Otherwise \(C = D \). WLOG, we assume that \(v_2 y, v_2 v_1, v_2 v_3, v_1, v, v_3 \) is colored with 1, 2, 3, 4, 5, 6, 7, 8. First, we have 5, 6, 8 \(\in C(v) \), for otherwise, we recolor \(vv_2 \) with a color in \(\{5, 6, 8\} \setminus C(v) \), and \(v_2 \) with 3, a contradiction. Since \(d(v) = 5 \) and \(\{3, 5, 6, 8\} \subset C(v) \), color 2 or 4 does not appear at \(v \), WLOG, 4 \(\not\in C(v) \). If \(\psi(vv_2) \in \{5, 6\} \), then we exchange the colors of edges \(v_2 v_3 \) and \(vv_3 \), recolor \(v_2 \) with 4. Otherwise, \(\psi(vv_2) \in \{1, 2\} \). If \(\psi(vv_2) = 1 \), then we exchange the colors of edges \(vv_3 \) and \(v_2 v_3 \), color \(v_2 \) with 2. Otherwise, we exchange the colors of edges \(v_2 v_1 \) and \(vv_1 \), recolor \(v_2 \) with 4, a contradiction, too.

Suppose that \(G \) contains a configuration depicted in Fig. 2(2), where \(d(v) = 7 \). Then \(G' = G - vv_7 \) has a total-8-coloring \(\psi \). Erase the colors on all black 3\(^{-}\)-vertices. For a vertex \(x \in V(G) \), let \(C(x) = \{\psi(xy) : y \in N(x)\} \). If \(\psi(v_3 v_7) \in C(v) \cup \{\psi(v)\} \),
then the forbidden colors for vv_j is at most 7, so vv_j can be properly colored. By recoloring the uncolored vertices, we obtain a total-8-coloring of G, a contradiction. So $\psi(vv_j) \not\in C(v)$, that is, $|C(v) \cup \{\psi(vv_j), \psi(vv_j)\}| = 8$. WLOG, assume that $\psi(v) = 8$, $\psi(vv_7) = 7$, and $\psi(vv_j) = j$ for $j \in \{1, 2, 5, 6\}$. If $\psi(vv_1v_2) \neq 7$, then we can recolor vv_1 with 7, and color vv_7 with 1 to obtain a total-8-coloring of G, a contradiction. So $\psi(vv_1v_2) = 7$. Similarly, we have $7 \in C(vv_6)$ and $\psi(vv_1v_2) = 2$. If $2 \not\in C(vv_6)$, then we exchange the colors of edges vv_7v_7 and $x_7v_1v_1v_2v_2$ and vv_7v_7 with 2, and color vv_6 with 6 to obtain a total-8-coloring of G, a contradiction. Hence $C(vv_6) = \{2, 6, 7\}$. If $\psi(vv_5v_6) = 7$, then we just exchange the colors of the edges vv_5v_6 and vv_5, and color vv_7 with 5. Otherwise, we exchange the colors of the edges vv_7v_7 and $x_7v_1v_1v_2v_2$ and vv_7v_5 and vv_5 and color vv_7 with 5. By recoloring the uncolored vertices, we obtain a total-8-coloring of G, a contradiction.

Since G is a planar graph, by Euler's formula, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -12 < 0.$$

Now we define the initial charge function $ch(x)$ of $x \in V \cup F$ to be $ch(v) = 2d(v) - 6$ if $v \in V$ and $ch(f) = d(f) - 6$ if $f \in F$. It follows that $\sum_{x \in V \cup F} ch(x) < 0$. Now we design appropriate discharging rules and redistribute weights accordingly.

Note that any discharging procedure preserves the total charge of G. If we can define suitable discharging rules to change the initial charge function ch to the final charge function ch' on $V \cup F$, such that $ch'(x) \geq 0$ for all $x \in V \cup F$, then we get an obvious contradiction.

Our discharging rules are defined as follows.

R1 Let v be a 2-vertex. If v is incident with a 3-face, then it receives 1 from each of its neighbors. Otherwise, v receives $\frac{1}{2}$ from its child and $\frac{1}{4}$ from its parent.

R2 Let f be a 3-face. If f is incident with a 3-vertex, then it receives $\frac{3}{2}$ from each incident 6-vertex. If f is incident with a 4-vertex, then it receives $\frac{1}{2}$ from the 4-vertex and receives $\frac{3}{2}$ from each incident 5-vertex. If f is not incident with any 4-vertex, then it receives 1 from each incident 5-vertex.

R3 Let f be a 4-face. If f is incident with two 3-vertices, then it receives 1 from each incident 6-vertex. If f is incident with the unique 3-vertex u, then it receives $\frac{1}{2}$ from each incident 6-vertex adjacent to u and receives $\frac{1}{4}$ from its incident 4-vertex opposite to u. If f is incident with no 3-vertices, then it receives $\frac{1}{2}$ from each incident vertex.

R4 Let f be a 5-face. If f is incident with two 3-vertices, then it receives $\frac{1}{2}$ from each incident 4-vertex. If f is incident with one 3-vertex, then it receives $\frac{1}{4}$ from each incident 4-vertex. If f is not incident with any 3-vertex, then it receives $\frac{1}{3}$ from each incident vertex.

The rest of this paper is to check $ch'(x) \geq 0$ for all $x \in V \cup F$. Firstly note that our discharging rules are just designed such that $ch'(f) \geq 0$ for all $f \in F$ and $ch'(v) \geq 0$ for all 2-vertices $v \in V$. So we only check that $ch'(v) \geq 0$ for all 3-vertices of G.

Let v be a vertex of G. If $d(v) = 3$, then $ch'(v) = ch(v) = 0$. If $d(v) = 4$, then v sends at most $\frac{1}{2}$ to each incident face by R2 and R3, and it follows that $ch'(v) \geq ch(v) - \frac{1}{2} \times 4 = 0$.

Suppose $d(v) = 5$. Then $d(v_i) \geq 4$ for all $i \in \{1, 2, \ldots, 5\}$ by (c) and v is incident with at most three 3-faces by the choice of G, that is, $f_1(v) = t \leq 3$. Assume that $t = 3$. If $f_2(v) \geq 2$, then $ch'(v) = ch(v) - \frac{3}{4} \times 3 > 0$ by R2. Otherwise, v is incident with at least one $(5^+, 5^+, 5^+, 5^+)$-face by Lemma 3. Then v sends at most $\frac{1}{2}$ to a $(5^+, 5^+, 5^+, 5^+)$-face by R2, at most $\frac{1}{4}$ to a 4^+-face by R3 and at most $\frac{1}{2}$ to a 5^+-face by R4. Hence $ch'(v) \geq ch(v) - \frac{3}{4} \times 2 - \frac{1}{4} = \frac{1}{2} > 0$. Assume that $t = 2$. Then $f_3(v) \geq 1$. Hence $ch'(v) \geq ch(v) - \frac{3}{4} \times 2 - \frac{1}{4} \times 2 > 0$. Assume that $t \leq 1$. Then $f_3(v) \leq 2$. Hence $ch'(v) \geq ch(v) - \frac{3}{4} \times t - \frac{1}{2} \times (5 - 2 - t) = \frac{12 - 7t}{4} > 0$.

Suppose $d(v) = 6$. Then $t \leq 4$ and $d(v_i) \geq 3$ for all $i \in \{1, 2, \ldots, 6\}$. If $3 \leq t \leq 4$, then $f_2(v) \geq 2$, and it follows that $ch'(v) \geq ch(v) - \frac{3}{4} \times t - (6 - 2 - t) = \frac{4t - 12}{4} \geq 0$. If $t = 2$, then $f_4(v) \leq 2$, and it follows that $ch'(v) \geq ch(v) - \frac{3}{4} \times 2 - \frac{1}{4} \times \frac{1}{2} = \frac{1}{2} > 0$. If $0 \leq t \leq 1$, then $f_4(v) \leq 3$, and it follows that $ch'(v) \geq ch(v) - \frac{3}{4} \times t - \frac{1}{4} \times (6 - 3 - t) = \frac{12 - 7t}{8} > 0$.

![Fig. 2. Reducible configurations.](image-url)
Suppose $d(v) = 7$. Then $\chi^*(v) = 2 \times 7 - 6 = 8$. If $n_2(v) \geq 2$, then any 2-vertex adjacent to v is not incident with a 3-face by Lemma 2(1), so v sends at most $\frac{8^2+2}{2} = 2$ to all its adjacent 2-vertices by R1. Moreover, v sends at most $\frac{1}{2}$ to a 3-face by R2, at most 1 to a 4-face by R3 and at most $\frac{1}{2}$ to a 5-face by R4.

By the choice of C, we have the following lemma.

Lemma 4. Suppose that $d(v_i) = d(v_j) = 2$ and $d(v_k) \geq 3$ for all $i = 1, \ldots, k - 1$. If $f_i, f_{i+1}, \ldots, f_{k-1}$ are 4*-faces, then v sends at most $\left[\frac{k-1}{2}\right] + \left[\frac{k-2}{2}\right] \times \frac{1}{2}$ (in total) to $f_i, f_{i+1}, \ldots, f_{k-1}$.

Proof. By the choice of C, v is incident with at most $\left[\frac{k-1}{2}\right]$ 4*-faces and $\left[\frac{k-2}{2}\right]$ 5*-faces. Moreover, v sends at most 1 to each incident 4*-face by R3 and at most $\frac{1}{2}$ to each incident 5*-face by R4. Then v sends at most $\left[\frac{k-1}{2}\right] + \left[\frac{k-2}{2}\right] \times \frac{1}{2}$ to $f_i, f_{i+1}, \ldots, f_{k-1}$. $lacksquare$

We consider the following cases.

Case 1. $n_2(v) \geq 6$. Then $f_{0+}(v) \geq 5$ by Lemma 2(4) and $t = 0$ by Lemma 2(1). So $\chi'(v) \geq 8 - \frac{6+2}{2} = 6 > 0$.

Case 2. $n_2(v) = 5$. Then $f_{0+}(v) \geq 3$. So $\chi'(v) \geq 8 - \frac{5+2}{2} - \max\{4 \times 1, \frac{1}{2} + 2 \times 1\} > 0$.

Case 3. $n_2(v) = 4$. All 2-vertices adjacent to v are located as shown in Fig. 3, where the vertices marked by \cdot are 2-vertices.

For Fig. 3(a), f_4, f_5, f_6 are 6*-faces by Lemma 2(4). By Lemma 2(1), f_5, f_6 are 4*-faces, thus f_1, f_2, f_3 can be 3-faces, that is, $f_1(v) = t \leq 2$. So $\chi'(v) \geq 8 - \frac{4+2}{2} - \frac{1}{2} \times t - (7 - 3 - t) = \frac{2}{t} + \frac{1}{2} > 0$.

For Fig. 3(b) (the case Fig. 3(c) can be settled similarly), $t \leq 1$ and $f_{0+}(v) \geq 2$. By Lemma 2(4), f_5, f_6 are 6*-faces, if $t = 1$, then f_1 is a 3-face, f_2, f_3, f_4, f_5 are 4*-faces. So v sends at most $\frac{3}{2}$ to f_1 by R2, at most 2×1 to f_2 and f_3 by R3 and at most $(1 + \frac{1}{3})$ to f_4 and f_5 by Lemma 4. Hence $\chi'(v) \geq 8 - \frac{4+2}{2} - \frac{1}{2} - (1 + \frac{1}{2}) = 0$. Otherwise, we have that $\chi'(v) \geq 8 - \frac{4+2}{2} - 5 \times 1 = 0$.

For Fig. 3(d), we have $t = 0$ and $f_{0+}(v) \geq 1$. Then $\chi'(v) \geq 8 - \frac{4+2}{2} - 3 \times (1 + \frac{1}{3}) > 0$ by Lemma 4.

Case 4. $n_2(v) = 3$. All 2-vertices adjacent to v are located as shown in Fig. 4, where the vertices marked by \cdot are 2-vertices.

For Fig. 4(a), $t \leq 3$ and $f_{0+}(v) \geq 2$. If $0 \leq t \leq 1$, then $\chi'(v) \geq 8 - \frac{\frac{1+2}{2}}{2} - \frac{1}{2} \times t - (7 - 2 - t) = \frac{t+1}{2} > 0$. Otherwise, $f_{0+}(v) \geq 3$, and it follows that $\chi'(v) \geq 8 - \frac{\frac{3+2}{2}}{2} - \frac{1}{2} \times t - (7 - 3 - t) = \frac{4+1}{2} > 0$.

For Fig. 4(b), $t \leq 2$ and $f_{0+}(v) \geq 1$. Then v sends at most $(1 + \frac{1}{2})$ to f_4 and f_5 by Lemma 4. If $t = 2$, then $f_{0+}(v) \geq 2$ and it follows that $\chi'(v) \geq 8 - \frac{\frac{1+2}{2}}{2} - \frac{1}{2} \times 2 - 1 - (1 + \frac{1}{2}) = \frac{1}{2} > 0$. If $t \leq 1$, then $f_4(v) \leq 3$ and it follows that $\chi'(v) \geq 8 - \frac{\frac{3+2}{2}}{2} - \frac{1}{2} \times t - 3 \times 1 - \frac{1}{2} \times (7 - 3 - t) > 0$.

For Fig. 4(c), $t \leq 2$ and $f_{0+}(v) \geq 1$. Suppose $t = 2$. Then $f_{0+}(v) \geq 2$. If $f_{0+}(v) \geq 3$, then $\chi'(v) \geq 8 - \frac{\frac{3+2}{2}}{2} - \frac{1}{2} - 2 - 2 > 0$. Otherwise, by Lemma 2(5) and (d), v is incident with at least one $(4, 5^{+}, 6^{+})$-face and at least two 4-1 faces each of which incident with at most one 3^--vertex. Moreover, v sends at most $\frac{1}{2}$ to a $(4, 5^{+}, 6^{+})$-face by R2, at most $\frac{1}{2}$ to a 4*-face incident with at most one 3^--vertex by R3. Hence $\chi'(v) \geq 8 - \frac{\frac{3+2}{2}}{2} - \frac{1}{2} - \frac{1}{2} \times 2 - 2 = 0$. Suppose $t = 1$. Then $f_4(v) \leq 3$. If $f_4(v) \leq 3$, then $\chi'(v) \geq 8 - \frac{\frac{3+2}{2}}{2} - \frac{1}{2} - 3 - \frac{1}{2} \times 2 > 0$. Otherwise, $f_4(v) = 4$. Then v is incident with at least one $(4, 5^{+}, 6^{+})$-face and at least two 4-1 faces each of which incident with at most one 3^--vertex by Lemma 2(5), and it follows
that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - \frac{7}{4} \times 2 - (2 + \frac{1}{2}) > 0$ by Lemma 4. For $t = 0$, then $c'(v) \geq 8 - \frac{3+2}{2} - (2 + \frac{1}{2}) \times 2 > 0$ by Lemma 4.

For Case 4(d), $t \leq 1$. Suppose $t = 0$. Then $c'(v) \geq 8 - \frac{3+2}{2} - (1 + \frac{1}{2}) > 0$ by Lemma 4. Suppose $t = 1$. Then $f_3(v) \leq 4$. If $f_3(v) \leq 3$, then $c'(v) \geq 8 - \frac{3+2}{2} - 3 \times 1 - \frac{1}{2} \times 3 = 0$. Otherwise, v is incident with at least one (4, 5, 6)-face and at least two 4-faces each of which incident with at most one 3-face. Then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 2 \times (1 + \frac{1}{2}) > 0$ by Lemma 4.

Case 5. $n_2(v) = 2$. All 2-vertices adjacent to v are located as shown in Fig. 5, where the vertices marked by * are 2-vertices. For Fig. 5(a), $t \leq 3$ and $d(f_3) \geq 5$ by (b). Thus v sends at most $\frac{1}{2}$ to f_3 by R4. Suppose $t = 3$. Assume that 3-faces incident with v are adjacent mutually, without loss of generality, say f_1, f_2, f_3 are 3-faces. Moreover, $d(v^3) \geq 4$ and $d(v^3) \geq 4$ by Lemma 2(6), then v is incident with at least one (4, 5, 6)-face. If $f_3(v) \geq 2$, then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 1 - \frac{1}{2} \times 2 > 0$. Otherwise, $f_3(v) \geq 2$. Then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - 3 \times 1 - \frac{1}{2} \times 2 > 0$. Assume that 3-faces incident with v are not adjacent mutually. That is f_1, f_2, f_3 are 3-faces, then f_3, f_3 are 6-faces by the choice of G, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - 3 \times 1 - \frac{1}{2} \times (7 - 3 - t) = \frac{10-7t}{6} > 0$.

For Fig. 5(b), $t \leq 3$. Note that v sends at most (1 + $\frac{1}{2}$) to f_3 and f_3 by Lemma 4. Suppose $t = 3$. That is, f_1, f_2, f_3 are 3-faces, then f_4, f_5 are 6-faces. It follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 3 \times 1 - \frac{1}{2} \times 2 > 0$. Suppose $t \geq 2$. Then $f_3(v) \geq 1$. Assume that v is incident with two adjacent 3-faces. Then $f_3(v) \geq 2$ by the choice of G, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 2 \times 3 - 1 - \frac{1}{2} \times 2 > 0$. Assume that the two 3-faces incident with v are not adjacent. That is, f_1, f_2 are 3-faces, then $d(f_3) \geq 6$ by the choice of G. If $d(v) \geq 5$, then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 2 - 1 - \frac{1}{2} (\frac{1}{2} + 1) = \frac{1}{6} > 0$.

Otherwise, $f_3(v) \geq 2$. Then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - 3 \times 1 - \frac{1}{2} \times 2 > 0$. Otherwise, $f_3(v) \geq 4$, then v is incident with at least one 4-face incident with at most one 3-face, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - 3 \times 1 - \frac{1}{2} \times 2 > 0$. Suppose $t = 0$. Then $f_3(v) \geq 3$. We have $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - \frac{1}{2} \times 3 > 0$.

For Fig. 5(c), $t \leq 3$. Suppose $t = 3$. That is, f_1, f_2, f_3 are 3-faces, then f_4, f_5 are 6-faces. Moreover, $f_3(v) \geq 4$ by (c) and then f_4, f_5 are 6-faces each of which incident with at most one 3-face by Lemma 2(5) and (6), and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - \frac{1}{2} \times 2 > 0$. Suppose $t = 2$. Then $f_3(v) \geq 1$. If $f_3(v) \geq 2$, then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - \frac{1}{2} \times 2 > 0$. Suppose $t = 1$. Then $f_3(v) \geq 1$. If $f_3(v) \geq 2$, then $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - \frac{1}{2} \times 2 > 0$. Otherwise, v is incident with at least one 4-face incident with at most one 3-face, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{7}{4} \times 2 - \frac{1}{2} \times 2 > 0$.

Case 6. $n_2(v) = 1$. Without loss of generality, assume that $d(v) = 2$. By (e), we have $n_4(v) \geq 1$.

Case 6.1. v_2 is incident with a 3-face, that is, f_6 is a (2, 7, 7)-face. Then v sends at most 1 to v_2 by R1. Note that $t \leq 5$ and all other 3-faces except f_6 incident with v are (4, 5, 6)-face by Lemma 2(2) and (3). If $4 \leq t \leq 5$, then $f_6(v) \geq 2$. So $c'(v) \geq 8 - 1 - \frac{1}{2} - \frac{1}{2} \times (t - 1) - (7 - 2 - t) = \frac{10-7t}{6} > 0$. If $2 \leq t \leq 3$, then $f_6(v) \geq 1$, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 2 \times 3 - 1 - \frac{1}{2} \times 2 > 0$. If $t = 1$, then $f_6(v) \geq 1$, and it follows that $c'(v) \geq 8 - \frac{3+2}{2} - 3 \times 1 > 0$.

Case 6.2. v_7 is not incident with any 3-face. Then v sends at most $\frac{1}{2}$ to v_7. By R1. Moreover, we obtain that $t \leq 4$. Suppose $0 \leq t \leq 1$. Then $f_6(v) \geq 2$. Thus $c'(v) \geq 8 - \frac{3+2}{2} - \frac{5}{4} - 2 \times (7 - 2 - t) = \frac{10-7t}{6} > 0$. Suppose $t = 2$. Then $f_6(v) \geq 1$. If $f_6(v) \geq 2$, then $c'(v) \geq 8 - \frac{3+2}{2} - 2 \times 3 > 0$.
Suppose \(t = 3 \). Then \(f_6^+(v) \geq 2 \), and it follows that \(ch'(v) \geq 8 - \frac{3}{2} - 3 \times \frac{3}{2} - 2 \times 1 = 0 \). Suppose \(t = 4 \). Then \(f_6^+(v) \geq 2 \).

By Lemma 2(6), \(v \) is incident with at least one \((4,5^+,6^+)\)-face. If \(v \) is incident with at least two \((4,5^+,6^+)\)-faces, then \(ch'(v) \geq 8 - \frac{3}{2} - 2 \times \frac{3}{2} - 2 \times \frac{3}{2} - 1 = 0 \). Otherwise, \(v \) is incident with one 4-face incident with at most one 3'-vertex by Lemma 3. Thus \(ch'(v) \geq 8 - \frac{3}{2} - 3 \times \frac{3}{2} - 2 \times 2 = 0 \).

Case 7. \(n_2(v) = 0 \). Note that \(t \leq 5 \). If \(4 \leq t \leq 5 \), then \(f_6^+(v) \geq 2 \), and it follows that \(ch'(v) \geq 8 - \frac{3}{2} \times t - (7 - 2 - t) = \frac{6 - t}{2} > 0 \).

If \(t = 3 \), then \(f_6^+(v) \geq 1 \), and it follows that \(ch'(v) \geq 8 - \frac{3}{2} - 2 \times \frac{3}{2} - 3 - 3 > 0 \). If \(0 \leq t \leq 2 \), then \(ch'(v) \geq 8 - \frac{3}{2} \times t - (7 - t) = \frac{2 - t}{2} \geq 0 \).

Hence we complete the proof of the theorem. □

References