The degree resistance distance of cacti

Junfeng Du a, Guifu Su a, Jianhua Tu a, *, Ivan Gutman b,c

a School of Science, Beijing University of Chemical Technology, Beijing 100029, China
b Faculty of Science, University of Kragujevac, P.O. Box 60, Kragujevac, Serbia
c State University of Novi Pazar, Novi Pazar, Serbia

A R T I C L E I N F O

Article history:
Received 6 November 2014
Received in revised form 18 February 2015
Accepted 24 February 2015
Available online 20 March 2015

Keywords:
Resistance distance
Degree resistance distance
Cactus

A B S T R A C T

Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. The degree resistance distance of a graph G is defined as $D_{R}(G) = \sum_{\{u,v\}\subseteq V(G)} [d(u) + d(v)]R(u, v)$, where $d(u)$ is the degree of the vertex u, and $R(u, v)$ the resistance distance between the vertices u and v. Let $\text{Cact}(n; t)$ be the set of all cacti possessing n vertices and t cycles. The elements of $\text{Cact}(n; t)$ with minimum degree resistance distance are characterized.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The graphs considered in this paper are finite, loopless, and contain no multiple edges. Given a graph G, let $V(G)$ and $E(G)$ be, respectively, its vertex and edge sets. The ordinary distance $d(u, v) = d_{G}(u, v)$ between the vertices u and v of the graph G is the length of the shortest path between u and v.

The Wiener index $W(G)$ is the sum of ordinary distances between all pairs of vertices, that is, $W(G) = \sum_{\{u,v\}\subseteq V(G)} d(u, v)$. It is the oldest and one of the most thoroughly studied distance-based graph invariants [8, 9, 25].

A modified version of the Wiener index is the degree distance defined as $D(G) = \sum_{\{u,v\}\subseteq V(G)} \{d(u) + d(v)\}d(u, v)$, where $d(u) = d_{C}(u)$ is the degree of the vertex u of the graph G. The degree distance was also widely studied [24, 1, 15, 6, 7, 18–21, 31]. Tomescu [19] determined the unicyclic and bicyclic graphs with minimum degree distance. Yuan and An [31] determined the unicyclic graphs with maximum degree distance.

In 1993, Klein and Randić [16] introduced a new distance function named resistance distance, based on the theory of electrical networks. They viewed G as an electric network N by replacing each edge of G with a unit resistor. The resistance distance between the vertices u and v of the graph G, denoted by $R(u, v)$, is then defined to be the effective resistance between the nodes u and v in N. This new kind of distance between vertices of a graph was eventually studied in detail [16, 3, 4, 11, 12, 23, 30, 28].

If the ordinary distance is replaced by resistance distance in the expression for the Wiener index, one arrives at the Kirchhoff index

$$Kf(G) = \sum_{\{u,v\}\subseteq V(G)} R(u, v)$$

which also has been widely studied [2, 10, 13, 22, 27, 26, 32].

* Corresponding author.
E-mail addresses: djfdj1990@163.com (J. Du), dfnh1983@126.com (G. Su), tujh81@163.com (J. Tu), gutman@kg.ac.rs (I. Gutman).

http://dx.doi.org/10.1016/j.dam.2015.02.022
0166-218X/© 2015 Elsevier B.V. All rights reserved.
Similarly, if the ordinary distance is replaced by resistance distance in the expression for the degree distance, then one arrives at the degree resistance distance [14]:

$$D_R(G) = \sum_{(u,v) \in V(G)} [(d(u) + d(v))R(u,v)].$$

Palacios [17] named the same graph invariant “additive degree–Kirchhoff index”.

A cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, every edge in such a graph belongs to at most one simple cycle. Denote by $Cact(n; t)$ the set of cacti possessing n vertices and t cycles. If $G \in Cact(n; t)$, then $|E(G)| = n + t - 1$. In this paper, we determine the minimum degree resistance distance among graphs in $Cact(n; t)$ and characterize the corresponding extremal graphs.

2. Preliminaries

Let $R_C(u, v)$ denote the resistance distance between u and v in the graph G. Recall that [16] $R_C(u, v) = R_C(v, u)$ and $R_C(u, v) \geq 0$ with equality if and only if $u = v$.

For a vertex v in G, we define

$$Kf_v(G) = \sum_{u \in G} R_C(u, v) \quad \text{and} \quad D_v(G) = \sum_{u \in G} d_C(u)R_C(u, v).$$

In the above formulas and in what follows, for the sake of conciseness, instead of $u \in V(G)$ we write $u \in G$.

By the definition of $D_R(G)$, we also have

$$D_R(G) = \sum_{v \in G} d_C(v) \sum_{u \in G} R_C(u, v).$$

Lemma 1 ([16]). Let G be a graph, x be a cut vertex of G and let u, v be vertices belonging to different components which arise upon deletion of x. Then $R_C(u, v) = R_C(u, x) + R_C(x, v)$.

Lemma 2 ([14]). Let G be a connected graph with a cut-vertex v such that G_1 and G_2 are two connected subgraphs of G having v as the only common vertex and $V(G_1) \cup V(G_2) = V(G)$. Let $n_1 = |V(G_1)|$, $n_2 = |V(G_2)|$, $m_1 = |E(G_1)|$, $m_2 = |E(G_2)|$. Then

$$D_R(G) = D_R(G_1) + D_R(G_2) + 2m_2Kf_v(G_1) + 2m_1Kf_v(G_2) + (n_2 - 1)D_v(G_1) + (n_1 - 1)D_v(G_2).$$

Let v be a vertex of degree $p + 1$ in a graph G, such that vv_1, vv_2, \ldots, vv_p are pendent edges incident with v, and u is the neighbor of v distinct from v_1, v_2, \ldots, v_p. We form a graph $G' = \sigma(G, v)$ by deleting the edges vv_1, vv_2, \ldots, vv_p and adding new edges uv_1, uv_2, \ldots, uv_p. We say that G' is a σ-transform of G (see Fig. 1).

Lemma 3 ([14]). Let $G' = \sigma(G, v)$ be a σ-transform of the graph G, $d_C(u) \geq 1$. Then $D_R(G) \geq D_R(G')$. Equality holds if and only if G is a star with v as its center.

Let $G - v$ be the graph obtained from the graph G by deleting its vertex v and all edges incident to v.

Lemma 4. Let u be a vertex of G such that there are p pendent vertices u_1, u_2, \ldots, u_p attached to u. Let v be another vertex of G such that there are q pendent vertices v_1, v_2, \ldots, v_q attached to v. Let

$$G_1 = G - \{uv_1, uv_2, \ldots, uv_p\} + \{u_1, u_2, \ldots, u_p\}$$

and

$$G_2 = G - \{wu_1, wu_2, \ldots, wu_p\} + \{v_1, v_2, \ldots, v_p\}.$$

Then either $D_R(G) > D_R(G_1)$ or $D_R(G) > D_R(G_2)$.
Proof. Let \(A = \{u_1, u_2, \ldots, u_p\}, B = \{v_1, v_2, \ldots, v_q\} \) and \(H = V(G) \setminus (A \cup B \cup \{u, v\}) \). Let \(R_G(u, v) = r \).

In the transformation \(G \rightarrow G_1 \) for any pair of vertices \(x, y \) satisfying either \(x, y \in H \), or \(x \in A \), or \(x \in B \), or \(x \in A \), \(y \in H \), then the term \(\sum_{x,y} [d_G(x) + d_G(y)] R_G(x, y) \) does not change. Then

\[
D_R(G) = \left[\sum_{x,y \in H} + \sum_{x \in A} + \sum_{x \in B} + \sum_{y \in H} \right] [d_G(x) + d_G(y)] R_G(x, y) + \sum_{x \in B, y \in H} [d_G(x) + d_G(y)] R_G(x, y)
+ \sum_{x \in A, y \in B} [d_G(x) + d_G(y)] R_G(x, y) + \sum_{x \in A, y = u} [d_G(x) + d_G(y)] R_G(x, y)
+ \sum_{x \in B, y = v} [d_G(x) + d_G(y)] R_G(x, y) + \sum_{x \in H, y = u} [d_G(x) + d_G(y)] R_G(x, y)
+ \sum_{x \in H, y = v} [d_G(x) + d_G(y)] R_G(x, y) + \sum_{x = u, y = v} [d_G(x) + d_G(y)] R_G(x, y)
\]

and analogously,

\[
D_R(G_1) = \left[\sum_{x,y \in H} + \sum_{x \in A} + \sum_{x \in B} + \sum_{y \in H} \right] [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y) + \sum_{x \in B, y \in H} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y)
+ \sum_{x \in A, y \in B} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y) + \sum_{x \in A, y = u} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y)
+ \sum_{x \in B, y = v} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y) + \sum_{x \in H, y = u} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y)
+ \sum_{x \in H, y = v} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y) + \sum_{x = u, y = v} [d_{G_1}(x) + d_{G_1}(y)] R_{G_1}(x, y)
\]

So we get

\[
D_R(G) - D_R(G_1) = q \left[\sum_{y \in H} [2 + d_G(y)] [R_C(v, y) - R_C(u, y)] + r(3p + q) + r[d_G(u) - d_G(v)] \right]
\]
and by a similar reasoning,
\[D_R(G) - D_R(G_2) = p \left[\sum_{y \in H} [2 + d_C(y)][R_C(u, y) - R_C(v, y)] + r(3q + p) + r[d_C(v) - d_C(u)] \right]. \]

If \(D_R(G) - D_R(G_1) \leq 0 \), then
\[\sum_{y \in H} [2 + d_C(y)][R_C(v, y) - R_C(u, y)] + r(d_C(u) - d_C(v)) \leq -r(3p + q). \]

Now,
\[D_R(G) - D_R(G_2) = p \left[\sum_{y \in H} [2 + d_C(y)][R_C(u, y) - R_C(v, y)] + r(3q + p) + r[d_C(v) - d_C(u)] \right] \]
\[= p \left[- \sum_{y \in H} [2 + d_C(y)][R_C(v, y) - R_C(u, y)] - r[d_C(u) - d_C(v)] \right] + rp(3q + p) \]
\[\geq p \cdot r(3p + q) + rp(3q + p) > 0. \]

Thus, either \(D_R(G) > D_R(G_1) \) or \(D_R(G) > D_R(G_2) \).

Lemma 5 ([14]). Let \(C_k \) be the cycle of size \(k \), and \(v \in C_k \). Then, \(Kf(C_k) = \frac{k^3 - k}{12} \), \(D_R(C_k) = \frac{k^3 - k}{3} \), \(Kf_v(C_k) = \frac{k^2 - 1}{6} \), and \(D_v(C_k) = \frac{k^2 - 1}{3} \).

3. Main results

In this section, we characterize the graph with minimum degree resistance distance among the elements of \(\text{Cact}(n; t) \).

Lemma 6. Let \(G \) be the graph with minimum degree resistance distance among graphs in \(\text{Cact}(n; t) \). Then \(G \) must satisfy the following three conditions:

(i) \(G \) contains no pendent path with length greater than 1.

(ii) All pendent edges of \(G \) (if any) are incident to a common vertex.

(iii) If \(e \) is a cut edge of \(G \), then \(e \) is a pendent edge.

Proof. By Lemma 3, (i) holds. By Lemma 4, (ii) holds.

(iii) Assume that \(G \) has a cut edge \(uv \) which is not a pendent edge. Let \(G_1 \) and \(G_2 \) be the connected components of \(G - uv \), so that \(u \in G_1 \) and \(v \in G_2 \). Construct a new graph \(G' \) as indicated in Fig. 2.

In what follows, we denote by \(H \) the graph obtained by attaching to the vertex \(u \) of \(G \) the pendent vertex \(v \).

It is easy to see that \(G' \) also belongs to \(\text{Cact}(n; t) \). Let \(n_1 = |V(H)| \), \(n_2 = |V(G_2)| \), \(m_1 = |E(H)| \) and \(m_2 = |E(G_2)| \). By Lemma 2,

\[D_R(G) = D_R(H) + D_R(G_2) + 2m_2Kf_v(G_2) + 2m_1Kf_v(G_2) + (n_2 - 1)D_v(H) + (n_1 - 1)D_v(G_2) \]

and

\[D_R(G') = D_R(H) + D_R(G_2) + 2m_2Kf_v(H) + 2m_1Kf_v(G_2) + (n_2 - 1)D_u(H) + (n_1 - 1)D_v(G_2). \]
Then
\[D_K(G) - D_K(G^*) = 2m_2[Kf_u(H) - Kf_u(H)] + (n_2 - 1)[D_h(H) - D_u(H)] \]
\[= 2m_2 \sum_{x \in H} [R_{h}(x, v) - R_{h}(x, u)] + (n_2 - 1) \sum_{x \in H} d_h(x)[R_{h}(x, v) - R_{h}(x, u)] \]
\[= 2m_2(n_1 - 2) + (n_2 - 1) \left(\sum_{x \in H} d_h(x) - 2 \right). \]

Since \(uv \) is not a pendant edge, \(n_1 \geq 3, m_1 \geq 2, n_2 \geq 2, \) and \(m_2 \geq 1. \) Thus \(D_K(G) - D_K(G^*) > 0, \) i.e., \(G^* \) is a graph with smaller \(D_K \)-value than \(G, \) a contradiction. \(\blacksquare \)

Lemma 7. Let \(G = (V, E) \) be a graph belonging to \(\text{Cact}(n; t), t \geq 3. \) Let \(C_h \) be a cycle with \(h \geq 4 \) vertices, contained in \(G. \) Let there be a unique vertex \(u \) in \(C_h \) which is adjacent to a vertex in \(V(G) \setminus V(C). \) Assuming that \(uv, vw \in E(C), \) construct a new graph \(G^* = G - uw + uv \) as shown in Fig. 3. Then, \(D_K(G) > D_K(G^*). \)

Proof. Let \(S \) be the graph obtained by attaching to the vertex \(u \) of \(C_{h-1} \) the pendant vertex \(v. \) From **Lemma 2** it then follows,

\[D_K(G) = D_K(C_h) + D_K(H) + 2|E(H)|Kf_u(C_h) + 2hKf_u(H) + (|V(H)| - 1)D_u(C_h) + (h - 1)D_u(H) \]

and

\[D_K(G^*) = D_K(S) + D_K(H) + 2|E(H)|Kf_u(S) + 2hKf_u(H) + (|V(H)| - 1)D_u(S) + (h - 1)D_u(H). \]

Both \(G \) and \(G^* \) belong to \(\text{Cact}(n; t), \) which implies \(|E(G)| = |E(G^*)| = n + t - 1. \) From \(t \geq 3 \) and \(h \geq 4 \) it follows that \(n \geq 8. \) Therefore

\[D_K(G) - D_K(G^*) = D_K(C_h) - D_K(S) + 2(n + t - 1 - h)[Kf_u(C_h) - Kf_u(S)] + (n - h - 1)[D_u(C_h) - D_u(S)] \]
\[= \frac{h^2 - 8h + 3}{3} + 2(n + t - 1 - h) + (n - h - 1) \frac{2h - 7}{6} + (n - h - 1) \frac{2h - 4}{3} \] (by **Lemma 5**)
\[= \frac{h^2 - 8h + 3}{3} + (n - 1 - h) \frac{4h - 11}{3} + (n - h - 1) \frac{2h - 7}{3} \]
\[\geq \frac{h^2 - 2h - 18}{3} + (n - 1 - h) \frac{4h - 11}{3} \] (by \(t \geq 3). \)

If \(h = 4, \) then \(D_K(G) - D_K(G^*) = \frac{5}{3}n - 12 \geq \frac{4}{3} > 0. \) If \(h = 5, \) then \(D_K(G) - D_K(G^*) = 3n - 19 > 0. \) If \(h \geq 6, \) then \(D_K(G) - D_K(G^*) \geq h^2 - 2h - 18 > 0. \)

This completes the proof. \(\blacksquare \)

Lemma 8. Let \(G \) be a cactus graph. Let \(C^*_i = u_a, b, u \) (\(i = 1, 2, \ldots, s \)) be cycles of size 3, attached at a common vertex \(u. \) In addition, let \(C^*_v = v_f, g, v \) (\(j = 1, 2, \ldots, h \)) be cycles of size 3, attached at a common vertex \(v. \) Suppose \(C^*_i \) and \(C^*_v \) are vertex-disjoint for all \(i = 1, 2, \ldots, s, j = 1, 2, \ldots, h. \) Construct two new graphs

\[G_1 = G - \bigcup_{j=1}^{h} \{vf_j, f_jg, g_v\} + \bigcup_{j=1}^{h} \{uf_j, f_jg, g_u\} \]

and

\[G_2 = G - \bigcup_{i=1}^{s} \{ua_i, a_i, b_i, u\} + \bigcup_{i=1}^{s} \{va_i, a_i, b_i, v\}. \]

Then either \(D_K(G) > D_K(G_1) \) or \(D_K(G) > D_K(G_2). \)
Proof. Let \(A = \{a_1, b_1, \ldots, a_i, b_i\}, B = \{f_1, g_1, \ldots, f_j, g_k\} \) and \(H = V(G) - A - B - \{u, v\} \). Assume, \(R_c(u, v) = r \).

In the transformation \(G \rightarrow G_1 \) for any pair of vertices \(x, y \) satisfying either \(x, y \in H \), or \(x \in A, y \in B \), or \(x \in A, y \in H \), then the term \(\sum_{x, y} [d_c(x) + d_c(y)]R_c(x, y) \) remains unchanged. Thus,

\[
D_b(G) = \left[\sum_{x, y \in H} + \sum_{x \in A, y \in B} + \sum_{x \in A, y \in H} [d_c(x) + d_c(y)]R_c(x, y) \right] R_c(x, y) \\
+ \sum_{x \in B, y \in H} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in A, y \in B} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in A, y = u} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in A, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in B, y = u} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in B, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in H, y = v} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in H, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x = u, y = v} [d_c(x) + d_c(y)]R_c(x, y)
\]

and analogously,

\[
D_b(G_1) = \left[\sum_{x, y \in H} + \sum_{x \in A, y \in B} + \sum_{x \in A, y \in H} [d_c(x) + d_c(y)]R_c(x, y) \right] R_c(x, y) \\
+ \sum_{x \in B, y \in H} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in A, y \in B} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in A, y = u} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in A, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in B, y = u} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in B, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x \in H, y = v} [d_c(x) + d_c(y)]R_c(x, y) + \sum_{x \in H, y = v} [d_c(x) + d_c(y)]R_c(x, y) \\
+ \sum_{x = u, y = v} [d_c(x) + d_c(y)]R_c(x, y)
\]
which combines yields (see Fig. 4.Lemma 9.) adjacent to a vertex in \(V \) different from \(v \).

Let \(D \) be the spanning subgraph of \(G \) with vertex set \(V \). Let \(H_1 \) and \(H_2 \) be, respectively, the spanning subgraphs of \(G_1 \) and \(G_2 \) with vertex sets \(V(G_1) \setminus V(C) \) and \(V(G_2) \setminus V(G) \cup \{ v \} \). It is easy to see that \(H_1 \cong H_2 \cong K_{1,r} \). Then by Lemma 2,

\[
D(G_1) = D(G) + D(H_1) + 2rK_f(v) + 2(n + t - 1)K_f(H_1) + rD_u(G) + (n - 1)D_v(H_1)
\]

and

\[
D(G_2) = D(G) + D(H_2) + 2rK_f(v) + 2(n + t - 1)K_f(H_2) + rD_u(G) + (n - 1)D_v(H_2)
\]

which combined yields

\[
D(G_1) - D(G_2) = 2rK_f(v)G - K_f(G_2) + rD_u(G) - D_v(G)
\]

\[
= 2r \left[\sum_{x \in H} R_C(x, u) + \sum_{x \in C} R_C(x, u) - \sum_{x \in H} R_C(x, v) - \sum_{x \in C} R_C(x, v) \right]
\]

So we get

\[
D(G) - D(G_1) = 2h \left[\sum_{y \in H} [3 + d_C(y)][R_C(y, y) - R_C(u, y)] + r[10s + 2h] \right]
\]

and in a fully analogous manner:

\[
D(G) - D(G_2) = 2s \left[\sum_{y \in H} [3 + d_C(y)][R_C(u, y) - R_C(y, y)] + r[10h + 2s] \right].
\]

If \(D(G) - D(G_1) \leq 0 \), then

\[
\sum_{y \in H} [3 + d_C(y)][R_C(y, y) - R_C(u, y)] + r[d_C(u) - d_C(v)] \leq 0.
\]

Now,

\[
D(G) - D(G_2) = 2s \left[- \sum_{y \in H} [3 + d_C(y)][R_C(y, y) - R_C(u, y)] - r[d_C(u) - d_C(v)] \right]
\]

\[
+ 2s \cdot r[10h + 2s] = 2s \cdot r[10h + 2s] > 0.
\]

Thus, either \(D(G) > D(G_1) \) or \(D(G) > D(G_2) \), which completes the proof.

Definition 1. Let \(G \in \text{Cact}(n; t) \), \(t \geq 2 \). A cycle \(C \) of \(G \) is said to be an *end cycle* if there is a unique vertex \(v \) in \(C \) which is adjacent to a vertex in \(V(G) \setminus V(C) \). This unique vertex \(v \) in \(C \) is called the *anchor* of \(C \).

Lemma 9. Let \(G \in \text{Cact}(n; t) \), \(t \geq 2 \), be a cactus without cut edges. Let \(C \) be an end cycle of \(G \) and \(v \) be its anchor. Let \(u \) be a vertex of \(C \) different from \(v \). The graphs \(G_1 \) and \(G_2 \) are constructed by adding \(r \) pendant edges to the vertices \(u \) and \(v \), respectively (see Fig. 4). Then \(D(G_1) > D(G_2) \).

Proof. We first note that \(|V(G_1)| = |V(G_2)| = n + r \) and \(|E(G_1)| = |E(G_2)| = |E(G)| + r \).

Let \(H \) be the spanning subgraph of \(G \) with vertex set \(V(G) \setminus V(C) \). Let \(H_1 \) and \(H_2 \) be, respectively, the spanning subgraphs of \(G_1 \) and \(G_2 \) with vertex sets \(V(G_1) \setminus V(G) \cup \{ u \} \) and \(V(G_2) \setminus V(G) \cup \{ v \} \). It is easy to see that \(H_1 \cong H_2 \cong K_{1,r} \). Then by Lemma 2,

\[
D(G_1) = D(G) + D(H_1) + 2rK_f(u) + 2(n + t - 1)K_f(H_1) + rD_u(G) + (n - 1)D_v(H_1)
\]

and

\[
D(G_2) = D(G) + D(H_2) + 2rK_f(v) + 2(n + t - 1)K_f(H_2) + rD_u(G) + (n - 1)D_v(H_2)
\]

which combined yields

\[
D(G_1) - D(G_2) = 2r[K_f(u)G - K_f(G_2) + rD_u(G) - D_v(G)]
\]

\[
= 2r \left[\sum_{x \in H} R_C(x, u) + \sum_{x \in C} R_C(x, u) - \sum_{x \in H} R_C(x, v) - \sum_{x \in C} R_C(x, v) \right]
\]

\[
+ r \left[\sum_{x \in H} d_C(x)R_C(x, u) + \sum_{x \in L} d_C(x)R_C(x, u) - \sum_{x \in H} d_C(x)R_C(x, v) - \sum_{x \in C} d_C(x)R_C(x, v) \right]
\]
This completes the proof. ■

Theorem 1. Let $G^0(n; t)$ be the graph depicted in Fig. 5. Then $G^0(n; t)$ is the unique element of Cact$(n; t)$, $t \geq 1$, having minimum degree resistance distance.

Proof. Cact$(n; 1)$ consists of unicyclic graphs. Thus, based on results from [14], Theorem 1 holds for $t = 1$.

If $t = 2$, then Cact$(n; 2)$ consists of bicyclic graphs. Assume that G is the unique graph having the minimum degree resistance distance in Cact$(n; 2)$. By Lemmas 6 and 9, we conclude that G contains two cycles attached to a common vertex u, and that all pendant edges (if any) are also attached to u.

By a straightforward calculation we get

$$D_R(G) = -\frac{h_1^3}{3} + \frac{(2n + 1)h_1^2}{3} - \frac{(9n - 1)h_1}{3} - \frac{h_2^2}{3} + \frac{(2n + 1)h_2^2}{3} - \frac{(9n - 1)h_2}{3} + \frac{3n^2 + 5n}{3} - \frac{2}{3}$$

where h_1, h_2 are the sizes of the cycles of G. Then

$$D_R(G) - D_R(G^0(n; 2)) = \left(-\frac{h_1^3}{3} + \frac{(2n + 1)h_1^2}{3} - \frac{(9n - 1)h_1}{3} + 3n + 5 \right)$$

$$+ \left(-\frac{h_2^3}{3} + \frac{(2n + 1)h_2^2}{3} - \frac{(9n - 1)h_2}{3} + 3n + 5 \right).$$

Let

$$f(h) = -\frac{h_1^3}{3} + \frac{(2n + 1)h_1^2}{3} - \frac{(9n - 1)h_1}{3} + 3n + 5.$$

It is elementary to verify that $f(3) = 0$ and $f(h) > 0$ for $h > 3$. Therefore $D_R(G) \geq D_R(G^0(n; 2))$ with equality holding if and only if $G \cong G^0(n; 2)$. Thus the claim of Theorem 1 holds for $t = 2$.

If $t \geq 3$, then due to Lemma 9, if G is a graph with minimum degree resistance distance among graphs in Cact$(n; t)$, then G has at least two end cycles. By consecutive application of Lemmas 7–9, we arrive at the conclusion that G contains t cycles of size 3 attached to a common vertex and $n - 2t - 1$ pendant edges attached at the same vertex, i.e., $G \cong G^0(n; t)$. ■

By a straightforward calculation, we obtain

$$D_R(G^0(n; t)) = -\frac{4}{3}t^2 + \left(\frac{8}{3}n - 6 \right)t + 3n^2 - 7n + 4.$$

It can be shown that the value of $D_R(G^0(n; t))$ increases with t, for $1 \leq t \leq (n - 1)/2$. Thus $D_R(G^0(n; 1))$ is the graph with minimum degree resistance distance among all cacti.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11201021) and Beijing Higher Education Young Elite Teacher Project (No. YETP0517).
References