Note

Tetravalent half-arc-transitive graphs of order a product of three primes

Xiuyun Wanga,\ast, Yanquan Fengb, Jinxin Zhoub, Jihui Wanga, Qiaoling Maa

a School of Mathematics, University of Jinan, Jinan 250022, PR China
b Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 9 June 2015
Received in revised form 18 December 2015
Accepted 22 December 2015

\textbf{Keywords:}
Cayley graph
Half-arc-transitive graph
Metacirculants

\textbf{A B S T R A C T}

A graph is \textit{half-arc-transitive} if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let \(n \) be a product of three primes. The problem on the classification of the tetravalent half-arc-transitive graphs of order \(n \) has been considered by Xu (1992), Feng et al. (2007) and Wang and Feng (2010), and it was solved for the cases where \(n \) is a prime cube or twice a product of two primes. In this paper, we solve this problem for the remaining cases. In particular, there exist some families of these graphs which have a solvable automorphism group but are not metacirculants.

\(\ast \) Corresponding author.
E-mail address: wangxiuyun732@126.com (X. Wang).

\url{http://dx.doi.org/10.1016/j.disc.2015.12.022}

\textcopyright{} 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs considered are finite, connected, undirected and simple. Given a graph \(X \), denote by \(V(X) \), \(E(X) \), \(A(X) \) and \(\text{Aut}(X) \) the vertex set, edge set, arc set and automorphism group of \(X \), respectively. A graph \(X \) is said to be \textit{vertex-transitive}, \textit{edge-transitive} and \textit{arc-transitive} (symmetric) if \(\text{Aut}(X) \) acts transitively on \(V(X) \), \(E(X) \) and \(A(X) \), respectively. The graph \(X \) is said to be \textit{half-arc-transitive} provided that it is vertex- and edge- but not arc-transitive. More generally, by a \textit{half-arc-transitive} action of a subgroup \(G \) of \(\text{Aut}(X) \) on \(X \) we shall mean a vertex- and edge-, but not arc-transitive action of \(G \) on \(X \). In this case we say that the graph \(X \) is \(G \)-\textit{half-arc-transitive}.

In 1947, Tutte [40] initiated the investigation of half-arc-transitive graphs by showing that a vertex- and edge-transitive graph with odd valency must be arc-transitive, and few years later, Bouwer [5] gave a construction of \(2k \)-valent half-arc-transitive graph for every \(k \geq 2 \). Following these two classical articles, half-arc-transitive graphs have been extensively studied from different perspectives over decades by many authors. See, for example, [2,11,18,19,22,24,39,41–43].

One of the standard problems in the study of half-arc-transitive graphs is to classify such graphs of certain orders. Let \(p \) be a prime. It is well-known that there are no half-arc-transitive graphs of order \(p \) or \(p^2 \) [8], and by Cheng and Oxley [9], there are no half-arc-transitive graphs of order \(2p \). Alspach and Xu [2] classified the half-arc-transitive graphs of order \(3p \), Kutnar et al. [21] classified half-arc-transitive graphs of order \(4p \), and Wang [41] classified half-arc-transitive graphs of order a product of two distinct primes. Despite all of these efforts, however, more classifications of half-arc-transitive graphs with general valencies seem to be very difficult.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive graph, special attention has rightly been given to the study of tetravalent half-arc-transitive graphs. In particular, constructing and classifying the tetravalent half-arc-transitive graphs is currently one of active topics in algebraic graph theory (for example, see [1,10,12,14–16,23,25–34,38,44,48]).
Let p, q, r be distinct odd primes and let n be a product of three primes. Then $n \in \{8, 3p^2, 2p^2, 4p, p^2q, 2pq, pqr\}$. Let X be a tetravalent half-arc-transitive graph of order n. Clearly, $n \neq 8$ since the smallest half-arc-transitive graph has order 27. If $n = p^2$, $2p^2$, $4p$ or $2pq$ then the graphs X was determined in [13,16,44,47], respectively. In this paper, we give the classification of tetravalent half-arc-transitive graphs of order pq and p^2q. Thus, the classification of tetravalent half-arc-transitive graphs of order a product of three primes is determined. In particular, there exist some families of tetravalent half-arc-transitive graphs of order p^2q which have solvable automorphism groups but are not metacirculants. In fact, most of the known vertex-imprimitive half-arc-transitive graphs are metacirculants. Kutnar et al. [20] gave one family of half-arc-transitive graphs which are not metacirculant. It is therefore worth mentioning that some families of tetravalent half-arc-transitive graphs of order p^2q contain precisely unknown half-arc-transitive graphs which are not metacirculants.

2. Preliminary results

Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of $\text{Aut}(X)$. Then under the natural G-action on $V(X) \times V(X)$, the arc set $\text{A}(X)$ is partitioned into two G-orbits, say A_1 and A_2, which are paired with each other, that is, $A_2 = \{(v, u) \mid (u, v) \in A_1\}$. Each of two corresponding oriented graphs $(V(X), A_1)$ and $(V(X), A_2)$ has out-valency and in-valency which are equal to 2, and admits G as a vertex- and arc-transitive group of automorphisms. Moreover, each of them has X as its underlying graph. Let $D_{C}(X)$ be one of these two oriented graphs, fixed from now on. For an arc (u, v) in $D_{C}(X)$, we say that u and v are the tail and the head of the arc (u, v), respectively. An even length cycle C in X is called a G-alternating cycle if the vertices of C are alternately the tail or the head in $D_{C}(X)$ of their two adjacent edges in C. It was shown in [25, Proposition 2.4(i)] that, first, all G-alternating cycles in X have the same length – half of this length is called the G-radius of X and second, that any two adjacent G-alternating cycles in X intersect in the same number of vertices, called the G-attachment number of X. The intersection of two adjacent G-alternating cycles is called a G-attachment set. We say that X is tightly G-attached if its G-attachment number coincides with G-radius. If X is half-arc-transitive, the terms Aut(X)-alternating cycle, Aut(X)-radius, and Aut(X)-attachment number are referred to as an alternating cycle of X, radius of X and attachment number of X, respectively. Similarly, if X is tightly Aut(X)-attached, we say that X is tightly attached. For the purpose of this paper, we introduce a result due to Marušič.

Let $m \geq 3$ be an integer, $n \geq 3$ an odd integer and let $r \in \mathbb{Z}_n^*$ satisfy $r^m = \pm 1$. The graph $X(r; m, n)$ is defined to have vertex set $V = \{u_i^j \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$ and edge set $E = \{(u_i^j, u_{i+1}^{j+1}) \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$.

Proposition 2.1 ([25, Theorem 3.4]). A connected tetravalent graph X is a tightly attached half-arc-transitive graph of odd radius n if and only if $X \cong X(r; m, n)$, where $m \geq 3$, and $r \in \mathbb{Z}_n^*$ satisfying $r^m = \pm 1$, and moreover none of the following conditions is fulfilled:

1. $r^2 = \pm 1$;
2. $(r; m, n) = (2; 3, 7)$;
3. $(r; m, n) = (r; 6, 7k)$, where $k \geq 1$ is odd, $(7, k) = 1$, $r^6 = 1$, and there exists a unique solution $q \in \{r, -r, r^{-1}, -r^{-1}\}$ of the equation $x^2 + x - 2 = 0$ such that $7(q - 1) = 0$ and $q \equiv 5 \pmod{7}$.

The following proposition is due to Marušič and Praeger [31].

Proposition 2.2 ([31, Lemma 3.5]). Let X be a connected tetravalent G-half-arc-transitive graph for some $G \leq \text{Aut}(X)$, and let A be a G-attachment set of X. If $|A| \geq 3$, then the vertex-stabilizer of $v \in V(X)$ in G is of order 2.

Let S be a Cayley subset of a finite group G. We call S a CI-subset, if for any Cayley subset T of G, Cay(G, S) \cong Cay(G, T) implies that there is $\alpha \in \text{Aut}(G)$ such that $S^\alpha = T$. The following result is a well-known criterion for CI-subset due to Babai [3].

Proposition 2.3 ([3]). Let $X = \text{Cay}(G, S)$ be a Cayley graph on a finite group G with respect to S. Then S is a CI-subset of G if and only if for any $\sigma \in S_G$ with $\sigma^{-1}R(G)\sigma \leq \text{Aut}(X)$, there exists an $\alpha \in \text{Aut}(X)$ such that $\sigma^{-1}R(G)\alpha = \alpha^{-1}R(G)\sigma$, where S_G denotes the symmetric group on G.

The following proposition is straightforward (see [16]).

Proposition 2.4 ([16, Propositions 2.1 and 2.2]). Let $X = \text{Cay}(G, S)$ be half-arc-transitive. Then S contains no involutions, and there is no $\alpha \in \text{Aut}(G, S)$ such that $s^\alpha = s^{-1}$ for some $s \in S$. In particular, there are no half-arc-transitive Cayley graphs on abelian group.

Let p, q be distinct odd primes. To state the classification of connected tetravalent symmetric graphs of order pq, we need to define the following graphs. For each divisor r of $p - 1$ we use H_r to denote the unique subgroup of \mathbb{Z}_p^*, Define a graph $G(3p, r)$ by

$V(G(3p, r)) = \{x_i \mid i \in \mathbb{Z}_3, x \in \mathbb{Z}_p\}$,

$E(G(3p, r)) = \{xy_{i+1} \mid i \in \mathbb{Z}_3, x, y \in \mathbb{Z}_p \text{ and } y - x \in H_r\}$.

Then $G(3p, r)$ is a connected symmetric graph of order $3p$ and valency 2r. From [2,3,5,36,41,45], we have the following proposition.
Proposition 2.5. Let X be a tetravalent graph of order pq where $q < p$ are distinct odd primes. If X is half-arc-transitive then $2q \mid p - 1$, $(q, p) \neq (3, 7), (5, 11), (11, 23)$, and $\text{Aut}(X) \cong \mathbb{Z}_p \times \mathbb{Z}_{2q}$. If X is symmetric then one of the following holds:

1. $|V(X)| = 3 \cdot 7$ and $\text{Aut}(X) = \text{PGL}(2, 7)$;
2. $|V(X)| = 5 \cdot 7$ and $\text{Aut}(X) = S_7$;
3. $|V(X)| = 5 \cdot 11$ and $\text{Aut}(X) = \text{PGL}(2, 11)$;
4. $|V(X)| = 11 \cdot 23$ and $\text{Aut}(X) = \text{PGL}(2, 23)$;
5. $|V(X)| = 3 \cdot 5$ and $\text{Aut}(X) = S_5$;
6. $X \cong G(3p, 2)$ and $|\text{Aut}(X)| = 12p$;
7. X is a normal Cayley graph on group \mathbb{Z}_{pq} and $|\text{Aut}(X)| = 4pq$.

Let X be a vertex transitive graph and $G = \text{Aut}(X)$. Assume that $N \triangleleft G$. The normal quotient graph X_N of X relative to N is defined as the graph whose vertices are the orbits of N in $V(X)$ and two orbits are adjacent if there is an edge in X between vertices lying in these two orbits. If the valency of X_N equals the valency of X, then X is called a normal cover of X_N. From [23], we have the following proposition.

Proposition 2.6 ([23]). Let G be a finite group of odd order, and let $X = \text{Cay}(G, S)$ be connected and of valency 4. Assume that $A = \text{Aut}(X)$ and X is edge-transitive. Then one of the following holds:

1. G is normal in A;
2. there is a subgroup $M \triangleleft G$ such that $M \triangleleft A$, and X is a normal cover of X_M;
3. A has a unique minimal subgroup $N \cong \mathbb{Z}_p^k$ with p odd prime and $k \geq 2$ such that
 - (i) $G = N \rtimes R \cong \mathbb{Z}_p^k \times \mathbb{Z}_m$, where $m > 1$ is odd;
 - (ii) $A = N \rtimes (H \rtimes R) \cong \mathbb{Z}_p^k \rtimes (\mathbb{Z}_p^l \rtimes \mathbb{Z}_m)$, where $H \cong \mathbb{Z}_p^1$ with $2 \leq l \leq k$, satisfying the following statements:
 - (a) there exist $x_1, \ldots, x_k \in N$ and $\tau_1, \ldots, \tau_k \in H$ such that $N = \langle x_1, \ldots, x_k \rangle$ and $\langle \tau_1, \ldots, \tau_k \rangle \cong D_{2p}$ and $H = \langle \tau_i \rangle \times C_{p^i}(x_i)$ for $1 \leq i \leq k$;
 - (b) R does not centralize H;
 - (c) $A/(NH) \cong \mathbb{Z}_m$ or D_{2m}, and X is arc-transitive if and only if $A/(NH) \cong D_{2m}$;
4. $G \cong \mathbb{Z}_5, \mathbb{Z}_7 \times \mathbb{Z}_3, \mathbb{Z}_{11} \times \mathbb{Z}_5$, or $\mathbb{Z}_{23} \times \mathbb{Z}_{11}$.

The following propositions collect some results about group theory. By checking the orders of the non-abelian simple groups, we have the following proposition.

Proposition 2.7 ([17, pp. 12–14, 135–136]). Let G be a non-abelian simple group and let $p > q > r$ be odd primes. If $|G|$ has at most three prime divisors then G is isomorphic to one of the following groups:

- $A_5, A_6, \text{PSL}(2, 7), \text{PSL}(2, 8), \text{PSL}(2, 17), \text{PSL}(3, 3), \text{PSU}(3, 3), \text{PSU}(4, 2)$.

If $|G| = 2^npqr$ then $G \cong S(8), \text{PSL}(2, p)$, or $\text{PSL}(2, 2^t)$ with an integer $t \geq 4$.

The following proposition gives the structure of the Sylow 2-subgroups of $GL(2, p)$.

Proposition 2.8 ([7]). Let p be a prime and N a Sylow 2-subgroup of $GL(2, p)$. If $p \equiv 1 \pmod{4}$ then $N \cong \mathbb{Z}_{2^t} \rtimes \mathbb{Z}_2$ where $2^t \mid p - 1$ and $2^{t+1} \nmid p - 1$; if $p \equiv 3 \pmod{4}$ then $N \cong (a^2 = b^2 = 1, a^b = a^{q+1-1})$, where $s \geq 3$ such that $2^{s-1} \mid p + 1$ and $2^s \nmid p + 1$. In particular, N has no elementary abelian subgroup of order 8.

It is well known that a finite non-abelian group whose all Sylow subgroups are cyclic is metacyclic defined by the following defining relations:

$G = \langle a, b \rangle, \quad a^n = b^n = 1, \quad a^b = a^t$,

where $(r - 1)n, m) \equiv 1 \pmod{m}, r \neq 1 \pmod{m}$ but $r^n \equiv 1 \pmod{m}$ and $|G| = mn$. It is easy to get the following proposition.

Proposition 2.9. Let $p > q > r$ be odd primes and G a non-abelian group of order pq. Then G is isomorphic to one of the following groups:

1. $G_1 = \langle a, b \mid a^p = b^q = 1, a^b = a^r \rangle$ where $s^p \equiv 1 \pmod{p}, s^q \equiv 1 \pmod{q}$ and $s^r \equiv 1 \pmod{p}$;
2. $G_2 = \langle a, b \mid a^d = b^r = 1, a^b = a^i \rangle$ where $s^d \equiv 1 \pmod{d}$ and $s^i \equiv 1 \pmod{i}$;
3. $G_3 = \langle a, b \mid a^d = b^r = 1, a^b = a^i \rangle$ where $s^d \equiv 1 \pmod{i}$ and $s^i \equiv 1 \pmod{i}$;
4. $G_4 = \langle a, b \mid a^p = b^r = 1, a^b = a^i \rangle$ where $s^i \equiv 1 \pmod{pq}$.
By [6, pp. 76–80], we have the following proposition.

Proposition 3.10. Let \(p, q \) be distinct odd primes and \(G \) a non-abelian group of order \(p^2 q \). Then \(G \) is isomorphic to one of the following groups:

1. \(H_1 = \{ a, b \mid a^3 = b^4 = 1, a^3 = a' \} \) where \(r^p \equiv 1 \pmod{q} \);
2. \(H_2 = \{ a, b \mid a^3 = b^4 = 1, a^6 = a' \} \) where \(r^p \equiv 1 \pmod{q} \) and \(r^q \not\equiv 1 \pmod{p} \);
3. \(H_3 = \{ a, b \mid a^4 = b^4 = 1, a^6 = a' \} \) where \(r^q \equiv 1 \pmod{p} \);
4. \(H_4 = \{ a, b, c \mid a^6 = b^4 = c^3 = [a, b] = [a, c] \equiv 1, c^2 = c' \} \) where \(r^p \equiv 1 \pmod{q} \);
5. \(H_5 = \{ a, b, c \mid a^6 = b^4 = c^3 = [a, b] = (a, c) \equiv 1, b^6 = b' \} \) where \(r^q \equiv 1 \pmod{p} \);
6. \(H_{6x} = \{ a, b, c \mid a^3 = b^4 = c^3 = [a, b] = 1, a^3 = a', b^6 = b' \} \) where \(r^q \equiv 1 \pmod{p} \) and \(x \neq 0 \); there are \(\frac{1}{2}(q+1) \) non-isomorphic groups;
7. \(H_2 = \{ a, b, c \mid a^6 = b^4 = c^3 = [a, b] = 1, a^6 = a', b^6 = a'^{-1} b^2 p \} \) where \(t^l \equiv 1 \pmod{p} \).

Remark. For group \(H_{6x} \), take \(u = b, v = a, w = c \) with \(xy \equiv 1 \pmod{q} \). It is easy to check that \(H_{6x} = \langle a, b, c \mid a^6 = b^4 = c^3 = [a, b] = 1, a^6 = a', b^6 = b' \rangle \equiv \langle u, v, w \mid u^b = v^b = w^s = [u, v] = 1, u^w = u', v^w = v' \rangle = H_{6y} \). Since \(x \in \mathbb{Z}_q^* \), \(x \) has \(1 + \frac{q-3}{2} = \frac{q+1}{2} \) choices. For group \(H_2 \), \(l \) is a complex number such that \(l^l \equiv 1 \pmod{p} \).

3. Classification

In this section, we determine the classification of tetravalent half-arc-transitive graphs of order \(pqr \) and \(p^2q \) where \(p, q, r \) are distinct odd primes. First, we give the following lemma.

Lemma 3.1. Let \(G = \langle a, b \mid a^n = b^m = 1, a^6 = a' \rangle \) where \(s^n = 1 \pmod{m} \). For \(k \in \mathbb{Z}_n^* \), set \(C^k := Cay(G, \{b^k, b^{-k}, b^ka, (b^ka)^{-1}\}) \). Then \(C^k \cong X(s^k; n, m) \).

Proof. Set \(T_k = [b^k, b^{-k}, b^ka, (b^ka)^{-1}] \). Recall that \(X(s^k; n, m) \) has vertex set \(V = \{ u \mid i \in \mathbb{Z}_n, j \in \mathbb{Z}_m \} \) and edge set \(E = \{ [u_i, u_{i+j}] \mid i \in \mathbb{Z}_n, j \in \mathbb{Z}_m \} \). It is easy to see that \(a^ib^j = a^{i+j} \) for all integers \(i \) and \(j \). Also, one may easily check that the map \(u_i \mapsto (b^ka)^i \) \(i \in \mathbb{Z}_n, j \in \mathbb{Z}_m \) is an isomorphism from \(X(s^k; n, m) \) to \(Cay(G, T) \), where \(T = [b^ka^{-1}, (b^ka^{-1})^{-1}, b^ka, (b^ka)^{-1}] \). For any \(i \in \mathbb{Z}_n^* \), the map \(a \mapsto a^i, b \mapsto b \) induces an automorphism of \(G \). This implies that \(Aut(G) \) is 2-transitive on the set \(\{ b^ka^j \mid i \in \mathbb{Z}_n^* \} \). It follows that \(G \) has an automorphism \(\varphi \) such that \((b^ka)^i = b^ka \) and \((b^ka^{-1})^i = b^ka^{-1} \). Then \(\varphi^2 = T_k \), and hence \(\varphi \) is an isomorphism from \(Cay(G, T) \) to \(C^k \). Consequently, \(C^k \cong X(s^k; n, m) \). \(\square \)

Now, we give the classification of tetravalent half-arc-transitive graphs of order \(pqr \).

Theorem 3.2. Let \(3 \leq r < q < p \) be distinct primes and let \(X \) be a connected tetravalent half-arc-transitive graph of order \(pqr \). Then \(X \cong X(s^k; q, r, p) \), \(X(s^k; r, p, q) \), or \(X(s^k; q, pr) \) and \(X \) is a normal Cayley graph on a Frobenius group.

Furthermore, the number of non-isomorphic connected tetravalent half-arc-transitive graphs of order \(pqr \) is equal to

\[
\left\lfloor \frac{q+1}{2} \right\rfloor - 1 \quad \text{if } qr \mid p-1, \\
\frac{q+r}{2} - 1 \quad \text{if } q \mid p-1, r \mid p-1, r \mid q-1, \\
\frac{q-1}{2} \quad \text{if } q \mid p-1, r \mid p-1, r \mid q-1, \\
\frac{r}{2} - 1 \quad \text{if } r \mid p-1, q \mid p-1, \\
\frac{r-1}{2} \quad \text{if } r \mid p-1, q \mid p-1, r \mid q-1, \\
0 \quad \text{otherwise.}
\]

Proof. Let \(X \) be a connected tetravalent half-arc-transitive graph of order \(pqr \). Note that the group of order \(pqr \) is a Frobenius group. By [37], we know that \(X \) is a normal Cayley graph on Frobenius group, say \(X = Cay(G, S) \) where \(S = \{x, y, x^{-1}, y^{-1}\} \) with \(o(x) = o(y) \) and \(G = \langle x, y \rangle \). By **Proposition 2.9**, \(G \cong G_1, G_2, G_3, \) or \(G_4 \). Assume that \(G \cong G_1 = \langle a, b \mid a^6 = b^4 = 1, a^3 = a' \rangle \) where \(s^p \equiv 1 \pmod{m} \), \(s^q \not\equiv 1 \pmod{m} \) and \(s^r \not\equiv 1 \pmod{m} \). Set \(T_j = \{ b^j, b^{-j}, b^ka, (b^ka)^{-1} \} \) with \((j, qr) = 1 \). It is easy to check that \(S \cong T_j \). Note that \(a^{-1}b^j = b^ja^{-j} \). The automorphism of \(G_1 \) induced by \(a \mapsto a^{-j} \), \(b \mapsto b \) maps \(T_j \) to \(T_{qr-j} \). This implies that \(Cay(G_1, T_j) \cong Cay(G_1, T_{qr-j}) \). To complete the proof, it suffices to show that \(Cay(G_1, T_j) \) where \(1 \leq j \leq \frac{qr-1}{2} \) and \((j, qr) = 1 \) are pair-wise non-isomorphic.

Set \(A = Aut(X) \). By **Lemma 3.1**, \(Cay(G_1, T_j) \cong X(s^k; q, r, p) \). By **Proposition 2.2**, \(|A| = 2pqr \) and \(A_\circ \cong \mathbb{Z}_2 \) for \(u \in V(Cay(G_1, T_j)) \). It follows that \(R(G_1) < A \). Take \(\sigma \in S_{G_1} \) such that \(\sigma^{-1}R(G)\sigma \leq A \). Suppose that \(R(G)\sigma \neq R(G) \).
Then $R(G)R(G)\sim A$. Thus, $2 \mid \frac{|R(G)||R(G)|'}{|R(G)|R(G)'|'}$, it follows that $2 \mid \text{gcd}(m, n)$, a contradiction. Thus, $R(G)\sim R(G)$, by Proposition 2.3, T_j is a CI-subset of G. Let $1 \leq j_1, j_2 \leq \frac{r-1}{2}$ and $(j_2, q) = 1$ with $j_1 \neq j_2$. Suppose that $\text{Cay}(G, T_j) \cong \text{Cay}(G, T_{j_2})$. Since $T_j = \langle b^i, b^{-i}, b^ja, (b^ja)^{-1} \rangle (i = 1, 2)$ are CI-subsets of G, $\text{Cay}(G, T_j) \cong \text{Cay}(G, T_{j_2})$ implies that there is a $\beta \in \text{Aut}(G)$ such that $T_{j_2}^\beta = T_{j_2}$. Now that β must map b to $a^n b$ for some $m \in \mathbb{Z}_p$. Thus, $(b_1)^\beta = b_1 a^n$ for some $n \in \mathbb{Z}_p$, it means that $b_1 a^n = b_2 b_3 a^n$ for which is impossible because $1 \leq j_1, j_2 \leq \frac{r-1}{2}$ and $(j_2, q) = 1$ with $j_1 \neq j_2$. Thus, $\text{Cay}(G, T_j) \cong \text{Cay}(G, T_{j_2})$. There are exactly $\frac{(q^2-1)(q-1)}{2}$ non-isomorphic such graphs, they are $\text{Cay}(G, T_j)$ for $1 \leq j \leq \frac{q-1}{2}$ and $(j, q) = 1$.

Similarly, if $G \cong G_2$, G_3, or G_4, then $X \cong X(s'; q, r, p), X(s'; q, p, r)$ or $X(s'; r, p, q)$. Furthermore, there are exactly $\frac{q-1}{2}, \frac{r-1}{2}, \frac{t-1}{2}$ non-isomorphic such graphs, respectively. It is easy to check that $\text{Cay}(G, T_j) \cong \text{Cay}(G, T_{j_2})$ for $1 \leq i, j \leq 4$ and $i \neq j$.

Thus, if $q \mid p - 1$, then $G \cong G_1$, G_2, G_3, or G_4 and there are exactly $\frac{q-1}{2} + \frac{q-1}{2} + \frac{r-1}{2} + \frac{t-1}{2} = \frac{q+r+t+1}{2}$ non-isomorphic such graphs. If $q \mid p - 1$, then $G \cong G_2$, and there are exactly $\frac{q-1}{2}$ non-isomorphic such graphs. If $r \mid p - 1$, $q \mid p - 1$, then $G \cong G_3$, and there are exactly $\frac{q-1}{2}$ non-isomorphic such graphs. If $r \mid p - 1$, $q \mid p - 1$, then $G \cong G_4$, and there are exactly $\frac{q-1}{2} + \frac{r-1}{2} + \frac{r-1}{2} = \frac{q-1}{2}$ non-isomorphic such graphs. If $r \mid p - 1$, $q \mid p - 1$, then $G \cong G_4$ and there are exactly $\frac{q-1}{2}$ non-isomorphic such graphs.

Now, we give the classification of tetravalent half-arc-transitive graphs of order p^3. First, we give the following lemmas.

Lemma 3.3. Let p, q be distinct odd primes and X a tetravalent half-arc-transitive graph of order $p^3 q$. Then X is a normal Cayley graph.

Proof. Let X be a tetravalent half-arc-transitive graph of order $p^3 q$ and $u \in V(X)$. Set $A = \text{Aut}(X)$. Note that A_q is a 2-group. Then we may assume that $|A| = 2^m p^3 q$ with some integer $m \geq 1$. Let N be a minimal normal subgroup of A. Suppose that N is unsolvable. By Proposition 2.7, $N \cong A_5$, A_6, $PSL(2, 7)$, $PSL(2, 8)$ or $PGL(2, 17)$. By [46], there is no tetravalent half-arc-transitive graph of order 45 or 75, and $A_6 = \mathbb{Z}_2$ if $(p, q) = (3, 7)$ or $(7, 3)$. It follows that $N \cong PSL(2, 17)$, and $(p, q) = (3, 17)$. Furthermore, N is transitive on $V(X)$. Let $C = C_A(N)$. Since $C \cap N \cong N$, we have $C \cap N = 1$, implying that C is a 2-group. Clearly, A has no non-trivial normal 2-subgroup. Thus, $C = 1$. By N/C-theorem, we have $A \cong A/C \leq \text{Aut}(N) \cong PGL(2, 17)$. Thus, $A = PSL(2, 17)$ or $PGL(2, 17)$. Note that $X \cong \text{Cos}(A, H, H \cdot (g^{-1} H))$, where $H = A_q$ for some $u \in V(X)$ and $g \in A$ such that $(H, g) = A$. Since X has valency four, there exist $\frac{2}{p+q} = 2$. It follows that $|H \cap H^g| = 8$ or 16, which is impossible by Magma [4]. Thus, N is solvable.

Then $N \cong \mathbb{Z}_p, \mathbb{Z}_p \times \mathbb{Z}_q$ or \mathbb{Z}_q, implying that $|A/N| = 2^m p^3 q, 2^m q$ or $2^m p^2$. Suppose that A/N is unsolvable. By Proposition 2.7, $(p, q) = (3, 5)$ or $(3, 7)$. However, this is impossible by [46]. Thus, A/N is solvable, implying that A is solvable. It follows that the Hall 2-subgroup G of A is regular on $V(X)$, and X is a Cayley graph on G. By Proposition 2.6, we have one of the following three cases:

1. G is normal in A;
2. there is a subgroup $M < G$ such that $M \triangleleft A$, and X is a normal cover of X_M;
3. A has a unique minimal subgroup $N \cong \mathbb{Z}_p^2$ such that $G = N \times S \cong \mathbb{Z}_p^2 \times \mathbb{Z}_q$ and $A = N \times (H \times R) \cong \mathbb{Z}_p^2 \times (\mathbb{Z}_q^2 \times \mathbb{Z}_q)$.

For case (1), X is normal. For case (2), there is a subgroup $M < G$ such that $M \triangleleft A$, and X is a normal cover of X_M. Then $|X_M| \in \{pq, p, q, p^2\}$. Assume that $|X_M| = \ell$ where $\ell \mid p + q$. If $\ell \mid p - q$ then X_M is a normal Cayley graph. It follows that $G/M \triangleleft A/M$, implying that $G \triangleleft A$, hence X is normal. If $\ell = 5$ then $|A/M| = 10$ because X_M is A/M-half-arc-transitive and $A/M \leq S_5$. Again, $G/M \triangleleft A/M$ and $G \triangleleft A$, hence X is normal. Assume that $|X_M| = p^2$. Then X_M is a Cayley graph on abelian group G/M. It is well known that X_M is normal, that is, $G/M \triangleleft A/M$. Again, $G \triangleleft A$ and X is normal. Assume that $|X_M| = pq$. Assume that X_M is half-arc-transitive. By Proposition 2.5, $A/M \cong \mathbb{Z}_p \times \mathbb{Z}_q$. It follows that $G/M \triangleleft A/M$ and $G \triangleleft A$, implying that X is normal.

For case (3), $|A| = 4^m p$ and $|A/N| = 4^m$. Then $G/N \triangleleft A/N \cong \mathbb{Z}_p \times \mathbb{Z}_q$ and $\text{gcd}(m, q) = 3$ and $G/N \not\cong A/N$. Then $|A/N| = 12$, it follows that $A/N \cong A_4$. Note that $C_4(N) = N$. Then $A_4 \cong A/N \cong A/C_4(N) \leq GL(2, p)$. Note that the center $Z(GL(2, p))$ of $GL(2, p)$ is \mathbb{Z}_2. Let $Z \cap A_4 \cong A_2$, implying that $N \cap A_4 = 1$ and $A_4 = Z \times A_4$. It follows that $GL(2, p)$ has a subgroup which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. By Proposition 2.8, it is impossible. Thus, $G/N \triangleleft A/N$. It follows that $G \triangleleft A$ and hence X is normal. □

Lemma 3.4. Let $D_{x,1} = \text{Cay}(H_5, \{ac^i, (ac)^{-1}, abc^i, (abc)^{-1}\})$ and $D_{x,2} = \text{Cay}(H_5, \{ac^i, (ac)^{-1}, a^{-1}bc^i, (a^{-1}bc)^{-1}\})$ for $i \in \mathbb{Z}_q^*$. Then $D_{x,1}$ and $D_{x,2}$ are connected tetravalent half-arc-transitive graphs of order $p^2 q$, and there are exactly $q - 1$ non-isomorphic such graphs. Furthermore, $D_{x,1} \cong X(v; pq, p)$. □
Proof. Recall that $H_5 = \langle a, b, c \mid a^p = b^5 = c^q = [a, b] = [a, c] = 1, b^i = b^j \rangle \cong \mathbb{Z}_p \times F_{pq}$ where $r^q \equiv 1 \pmod{p}$. Set $S_i = \{ac, (ac)^{-1}, abc, (abc)^{-1}\}$ and $T_i = \{ac, (ac)^{-1}, a^{-1}bc, (a^{-1}bc)^{-1}\}$. Clearly, the map $a \mapsto a^{-1}, b \mapsto b^{-i}, c \mapsto c$ induces an automorphism of H_5. Thus, $S_i \cong S_{(1-i)}$ and $T_i \cong T_{(1-i)}$. Hence, we may assume that $1 \leq i \leq \frac{1}{2}(q - 1)$. Set $X = \mathcal{D}_{i,2}^i$ or $\mathcal{D}_{i,2}^i$ and $A = \text{Aut}(X)$. First, we prove the following claim.

Claim: X is normal.

The maps $a \mapsto a^{-1}, b \mapsto b^{-i}, c \mapsto c$ such that $(c^i)^a = bc^i$, can induce automorphisms of H_5. This means that X is edge transitive. By Proposition 2.6, we have one of the following three conditions:

(1) H_5 is normal in A;
(2) there exists $M < H_5$ such that $M \triangleleft A$ and X is a normal cover of X_M;
(3) A has a unique minimal subgroup $P \cong \mathbb{Z}_p \times \mathbb{Z}_q$ such that $A = P \rtimes ((H \rtimes R), O) \cong \mathbb{Z}_p^2 \times ((\mathbb{Z}_2 \times \mathbb{Z}_q)_T)$ with $t = 1$ or 2. Furthermore, $A/(PH) \cong \mathbb{Z}_p^2$ or \mathbb{Z}_2^2, and X is arc-transitive if and only if $A/(PH) \cong \mathbb{Z}_2^2$.

If (1) holds, then X is normal. If (2) holds, then $|M| = p, p^2$ or pq because $M \triangleleft H_5$. It follows that $|X_M| = pq, q$ or p. Assume that $|X_M| = p$. Note that $q \mid p - 1$. It follows that $p \geq 7$. It is well known that X_M is a normal Cayley graph. Then $H_5/M \triangleleft A/M$, implying that $H_5 \triangleleft A$. Hence, X is normal. Assume that $|X_M| = q$. If $q > 5$ then X is normal. If $q = 5$ then $X_M \cong S_5$ and $A/M \leq S_5$. It follows that $A/M \cong D_{10}$, F_{20}, A_5 or S_5 because A/M is transitive on the edge set of X_M. Suppose that $A/M \cong A_5$ or S_5. Then X_M is 2-arc-transitive, implying that X is 2-arc-transitive. It follows that A_1 is 2-transitive on $N(1)$. However, it is impossible because there is one 5-cycle passing through 1, c^i and c^{-i}, but there is no 5-cycle passing through 1, c^i and c^{ab}. Thus, $A/M \cong D_{10}$ or F_{20}. It follows that $\mathbb{Z}_5 \cong H_5/M \triangleleft A/M$, implying that $H_5 \triangleleft A$. Hence, X is normal. Now assume that $|X_M| = pq$. Note that $q \mid p - 1$. If X_M is half-arc-transitive, then $A/M \cong \mathbb{Z}_p \times \mathbb{Z}_q$ by Proposition 2.5. It follows that $|A| = 2pq$ and A is solvable. Then $H_5 \triangleleft A$ and X is normal. If X_M is symmetric, by Proposition 2.5, then X_M is a normal Cayley graph and $|A/M| = 4pq$, or $|X_M| = 3 \cdot 7 \cdot 5 \cdot 11$ or $11 \cdot 23$. For the latter cases, that is $(p, q) = (7, 3), (11, 5)$ or $(23, 11)$, by Magma, they are half-arc-transitive. For the former case, it is easy to see that $G_5 \triangleleft A$. Thus, X is normal. If (3) holds then $|H_5/P| = q$ and $|A/P| = 4q$ or $8q$. If $|A/P| = 4q$ then $H_5/P \triangleleft A/P$ because $q \geq 5$. Hence, X is normal. If $|A/P| = 8q$ then $A/(PH) \cong \mathbb{Z}_2^2$. It follows that there exists a subgroup B of A such that $B/(PH) \cong \mathbb{Z}_2^2$. Then $|B/P| = 4q$. It follows that $H_5/P \triangleleft A/P$, and hence $H_5/P \triangleleft A/P$, implying that $H_5 \triangleleft A$. Thus, X is normal.

Thus, the claim is true. It is easy to see that $\text{Aut}(H_5, S_5) = \text{Aut}(H_5, T_1) \cong \mathbb{Z}_2$. Thus, $A_1 \cong \mathbb{Z}_2$ and X is half-arc-transitive. In the same argument to Theorem 3.2, S_1 and T_1 are CI-subsets of H_5, it means that $\mathcal{D}_{i,1}$ and $\mathcal{D}_{i,2}$ are pairwise non-isomorphic, for $1 \leq k \leq \frac{1}{2}(q - 1)$. Furthermore, it is easy to see that $\mathcal{D}_{i,1} \cong X(r^k; pq, p)$. □

Lemma 3.5. Let $\mathcal{D}_{6k} = \text{Cay}(H_{6k}, \{c^i, c^{-i}, c^{ab}, (c^{ab})^{-1}\})$ for $i \in \mathbb{Z}_6$. If $q \geq 5$ and $x \neq 1$ then \mathcal{D}_{6k} is a connected tetravalent half-arc-transitive graph of order p^2q, and there are exactly $\frac{1}{2}(q - 1)$ non-isomorphic such graphs.

Proof. Recall that $H_{6k} = \langle a, b, c \mid a^p = b^5 = c^q = [a, b] = 1, a^i = a^j, b^i = b^j \rangle \cong \mathbb{Z}_p \times F_{pq}$ where $r^q \equiv 1 \pmod{p}$ and $x \neq 0$. Set $X = \mathcal{D}_{6k}$ and $A = \text{Aut}(X)$. One may check that there exists an automorphism α of H_{6k} which interchanges c^i and c^{ab}, c^{-i} and $(c^{ab})^{-1}$. Clearly, $\alpha \in A_1$, it follows that X is edge-transitive. In the same argument to Lemma 3.4, X is normal. It follows that $A_1 = \text{Aut}(H_{6k}, S)$ where $S = \{c^i, c^{-i}, c^{ab}, (c^{ab})^{-1}\}$. It is easy to check that $\text{Aut}(H_{6k}, S) \cong \mathbb{Z}_2$. Thus, X is half-arc-transitive. Furthermore, \mathcal{D}_{6k} are pairwise non-isomorphic, for $1 \leq k \leq \frac{1}{2}(q - 1)$. □

Remark. An (m, n)-metacirculant is a graph of order mn which has an automorphism σ with a cycle decomposition

$$\sigma = (v_1, v_2, \ldots, v_{mn}) = (v_{1n}, v_2, \ldots, v_{mn})$$

and an automorphism τ normalizing σ and cyclically permuting the orbits

$$V_i = \{v_{1i}, v_{2i}, \ldots, v_{mi}\}, \quad i = 1, 2, \ldots, n,$$

such that τ has a cycle of size m in its disjoint cycle decomposition; also refer to [1]. It is easy to know that $\mathcal{D}_{i,2}$ and \mathcal{D}_{6k} are not metacirculants.

Now the main result follows.

Theorem 3.6. Let p, q be distinct odd primes and X a tetravalent half-arc-transitive graph of order p^2q. Then $X \cong \mathcal{D}_{i,1}^k$ for $i = 1, 2, 3, 4$, or $X \cong \mathcal{D}_{3,2}^k$ for $j = 1, 2, 3, 4$, or $X \cong \mathcal{D}_{6k}$. Furthermore, the number of non-isomorphic connected tetravalent half-arc-transitive graphs of order p^2q is equal to

$$\begin{align*}
p - 1 & \quad \text{if } p \mid q - 1, \quad p^2 \mid q - 1, \\
p(p + 1) - 1 & \quad \text{if } p^2 \mid q - 1, \\
\frac{(q - 1)(q + 7)}{4} & \quad \text{if } 5 \leq p \mid q - 1, \\
3 & \quad \text{if } 3 = q \mid p - 1, \\
0 & \quad \text{otherwise.}
\end{align*}$$
First assume that $G = H_1 = \langle a, b \ | \ a^d = b^e = 1, a^d = a' \rangle$ where $r^p \equiv 1 \pmod{q}$. Then $a(a') = q, o(b^p) = p$ and $b^p \in Z(G), o(b^p) = p = p^2$, where $(i, q) = (j, p) = 1$ and $k \in \mathbb{Z}_q$. Since x is connected, we have $o(a) = o(b) = p^2$. Thus, we may assume that $S = \{ b^a, (b^a)^{-1}, b^a, (b^a)^{-1} \}$ with $(j, p) = (t, p) = 1$ and $i \neq 0$. Note that $(b^a)^{-1} = b^{-a-b^{-i}}$, and any element in $\text{Aut}(G)$ must map b to $b^{1+kp}a^m$ for $m \in \mathbb{Z}_q$ and $k \in \mathbb{Z}_q$. Since x is half-arc-transitive and x is a normal Cayley graph, there exists an automorphism $\alpha \in \text{Aut}(G)$ which interchange b^a and b^a or interchange b^a and $(b^a)^{-1}$, implying that $j = 0$ or t. Since $\text{Aut}(G)$ is transitive on the set $\{ b^a \ | \ i \in \mathbb{Z}_q \}$ for a given $j \in \mathbb{Z}_q$, we may assume that $b^i \in S$. Then $S \cong \{ b^i, b^{-i}, b^a, (b^a)^{-1} \}$ with $k \neq 0$. Note that the map $a^d \mapsto a$ and $b \mapsto b$ induces an automorphism of G. It follows that $S \cong \{ b^i, b^{-i}, b^a, (b^a)^{-1} \} \cup \{ b^1 \}$. By Lemma 3.1, $X \cong X(s^2; p^2, q)$, and by Proposition 2.1, X is half-arc-transitive. Similarly, there are exactly $\frac{1}{2}(p - 1)$ non-isomorphic such graphs.

Now assume that $G = H_2$ or H_3. Similarly, we have $X \cong X(s^2; p^2, q)$ or $X(s^3; q, p^2)$. And, there are exactly $\frac{1}{2}(q - 1)$ non-isomorphic graphs, respectively.

Now assume that $G = H_4 = \langle a, b, c \ | \ a^d = b^e = c^f = [a, b] = [a, c] = 1, a^b = c^e \rangle \cong \mathbb{Z}_p \times \mathbb{F}_p$ where $r^p \equiv 1 \pmod{q}$. Similarly, we have $S \cong \{ b^i, b^{-i}, b^a, (b^a)^{-1} \}$. Since $p | q - 1$, one may assume that $q = kp + 1$. Set $S = \{ r + (p + 1) - r \}$. Then $s^d = (r + (p + 1) - r)(kp - 1)p^3 = (kp - 1)p^3 = 1 \pmod{p}$, and $s^d = 2 \times (p + 1 - r)p^3 = 1 \pmod{p}$. Clearly, $\langle a, b, c \ | \ a^d = b^e = c^f = [a, b] = [a, c] = 1, a^b = c^e \rangle \cong \langle a, b, c \ | \ a^d = b^e = [a, b] = [a, c] = 1, a^b = c^e \rangle$. One may easily check that the map $\phi : u \mapsto (b^a)^{c^e} (i \in \mathbb{Z}_p, j \in \mathbb{Z}_p)$ is an isomorphism from $X(s^2; p, q)$ to $\text{Cay}(H_4, T)$, where $T = \langle b^a, (b^a)^{-1}, b^{-a}, (b^{-a})^{-1} \rangle$. Similarly, H_4 has an automorphism ψ such that $(b^a)^{c^e} = b^{-a}$ and $(b^{-a})^{-1} = b^{a}$. Then $T = S$, and hence ψ is an isomorphism from $\text{Cay}(H_4, T)$ to $\text{Cay}(H_4, S)$. Consequently, $X(H_4, S) \cong X(s^2; p, q)$ is a connected tetravalent tightly attached half-arc-transitive graph of order p^2q by Proposition 2.1. Furthermore, there are exactly $\frac{1}{2}(q - 1)$ non-isomorphic such graphs.

Now assume that $G = H_5$. Similarly, we may assume that $S \cong \{ ac, (ac)^{-1}, ab^c, (abc)^{-1} \}$ (or $\{ a^c, (ac)^{-1}, a^{-1}bc, (a^{-1}bc)^{-1} \}$) for $i \in \mathbb{Z}_q^*$. Thus, $X \cong D_{5,1} = X(s^2; pq)$ or $X \cong D_{5,2} = X(s^3; pq)$. Furthermore, there are exactly $q - 1$ non-isomorphic such graphs.

Now assume that $G = H_6 = \langle a, b, c \ | \ a^d = b^e = c^f = [a, b] = 1, a^d = a', b' = b' \rangle$ where $r^q \equiv 1 \pmod{p}$ and $x \neq 0$; or $x \neq 0$. There are exactly $\frac{1}{2}(q + 1)$ non-isomorphic groups. Then $o(c^ab^b) = q$ and $o(a^b) = p$, where $(i, q) = 1$ and $st \neq 0 \pmod{p}$. Similarly, we may assume that $S = \{ c^i, c^{-i}, c^iab, (c^iab)^{-1} \}$. Suppose that $x = 1$. Then X is not connected because $|S| = pq < q^2$. Thus, $x \neq 1$. Suppose that $q = 3$. Then $X = 2$. Define the map $\rho : c^p = c^{-1}, a^p = b^{-1-2i}, b^p = a^{-r-1}$. Clearly, ρ is an automorphism of G and $\rho \rho = S$. By Proposition 2.4, $X = \text{Cay}(G, S)$ is not half-arc-transitive. Hence, $\rho \rho \neq 1$ and $X \cong D_{6,3}$.

Now assume that $G = H_7 = \langle a, b, c \ | \ a^d = b^e = c^f = [a, b] = 1, a^d = b', b' = b^{-1} \rangle$ where $k = p^l + 1$ with $l = 1 \pmod{p}$. It is easy to know that for any automorphism α of G, we have that $c^i \alpha = c^ia^b$ or $c^i \alpha = c^i a^b$ where $s, t \in \mathbb{Z}_q$. Similarly, we may assume that $S = \{ c^i, c^{-i}, c^iab, (c^iab)^{-1} \}$. Define the map $\beta : c \mapsto c^{-1}, a \mapsto a^{-1}b^{-1}, b \mapsto a^{-1}b^{-1}$. It is easy to check that β is an automorphism of G and $\beta \beta = S$. By Proposition 2.4, X is not half-arc-transitive. Thus, if $p \mid q - 1$ and $p^2 \mid q - 1$, then $X \cong X(H_1, H_2, O_4)$ and there are exactly $p^2 - 1 - p - 1$ non-isomorphic such graphs.

If $p^2 \mid q - 1$, then $G \cong X(H_1, H_2, O_4)$ and there are exactly $p^2 - 1 + p^{2-1} + p^{2-1} = p^2 - 1$ non-isomorphic such graphs.

If $5 \leq q \mid p - 1$, then $G \cong X(H_5, H_6, H_7)$ and there are exactly $q - 1 + q^{2-1} + q^{2-1} = (q^{2-1} + q^{2-1})$ non-isomorphic such graphs.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11201180), the National Natural Science Foundation of Shandong (ZR2012AQ023), the Doctoral Program of University of Jinan (XBS1212) and the Research Fund of University of Jinan (XKY1306).

References