Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MACHol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery

Zhao Wang, Ting Luo, Ruilong Sheng, Hui Li, Jingjing Sun, and Amin Cao*

CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

ABSTRACT: In this work, a series of diblock terpolymer poly(6-O-methacryloyl-D-galactopyranose)-b-poly(methacrylic acid-co-6-choleryloxy hexyl methacrylate) amphiphiles bearing attached galactose and cholesterol grafts denoted as the PMAgala-b-P(MAA-co-MACHol)s were designed and prepared, and these terpolymer amphiphiles were further exploited as a platform for intracellular doxorubicin (DOX) delivery. First, employing a sequential RAFT strategy with preliminarily synthesized poly(6-O-methacryloyl-1,2,3,4-di-O-isopropylidene-D-galactopyranose) (PMAIpGP) macro-RAFT initiator and a successive trifluoroacetic acid (TFA)-mediated deprotection, a series of amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MACHol)s were prepared, and were further characterized by NMR, Fourier transform infrared spectrometer (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and a dynamic contact angle testing instrument (DCAT). In aqueous media, spontaneous micellization of the synthesized diblock terpolymer amphiphiles were continuously examined by critical micellization concentration assay, dynamic light scattering (DLS), and transmission electron microscopy (TEM), and the efficacies of DOX loading by these copolymer micelles were investigated along with the complexed nanoparticle stability. Furthermore, in vitro DOX release of the drug-loaded terpolymer micelles were studied at 37 °C in buffer under various pH conditions, and cell toxicities of as-synthesized diblock amphiphiles were examined by MTT assay. Finally, with H1299 cells, intracellular DOX delivery and localization by the block amphiphile vectors were investigated by invert fluorescence microscopy. As a result, it was revealed that the random copolymerization of MAA and MACHol comonomers in the second block limited the formation of cholesterol liquid-crystal phase and enhanced DOX loading efficiency and complex nanoparticle stability, that ionic interactions between the DOX and MAA comonomer could be exploited to trigger efficient DOX release under acidic condition, and that the diblock terpolymer micellar vector could alter the DOX trafficking in cells. Hence, these suggest the pH-sensitive PMAgala-b-P(MAA-co-MACHol)s might be further exploited as a smart nanoplatform toward efficient antitumor drug delivery.

INTRODUCTION

In recent decades, synthetic glycopolymers with saccharide grafts such as galactose (GAL), mannose (MAN), lactobionic acid (LBA), and so forth have attracted broad interests. It provides great potential toward advanced drug/gene delivery, tissue engineering, organ regeneration, as well as clinical diagnostics and biomedical imaging. To date, it has already been uncovered that bioactive GAL and LBA grafts could give rise to favorable water-solubility instead of polyethylene glycol (PEG). In addition, they have strong and specific binding to the asialoglycoprotein receptors (ASGPR), which is overexpressed on human hepatocyte surface. Therefore, the GALs and/or LBAs have been extensively exploited as potent blocks in designing translocating vectors for drug delivery systems targeting human liver cancer cells. For instance, two series of diblock P(MEO2MA-co-OEGMA)-b-PMAGP and P(MAGP-co-DMAEMA)-b-PPDSMA copolymer amphiphiles with GAL grafts were prepared by Pan et al., and their self-assembled supramolecular nanoparticles could be uptaken by HepG2 cells in a more efficient way than HeLa cells. Amphiphilic sugar-functional polycarbonate micelles also exhibit strong ability targeting HepG2 cells in vitro. Alternatively, Ahmed et al. explored the hemocompatibility of hyperbranched glycopolymers, and thereby proved that the presence of these glycopolymers would not lead to clot formation, red blood cell aggregation, and any immune response. Taking the advantages of LBAs and reduction-responsive disulﬁde linkages into account, glyco-nanoparticles could be reported to bear reduction-sensitive sheddable LBA shells as potent hepatoma-targeting anticancer drug delivery vectors. Likewise, polymeric gene vectors bearing maninitols and some other saccharides have also been revealed to be able to stimulate...
glyco-nanoparticle cellular uptake and trafficking via selectively activated endocytic and intracellular trafficking gateways.14,15 Moreover, Yang et al.16 recently uncovered that two factors—enhanced permeability-and-retention effect (EPR) and lectin-mediated hepatoma-targeting ability—simultaneously influenced the doxorubicin (DOX) delivery in vivo by biodegradable polycarbonate micellar nanoparticles with GAL surface grafts. Since a PEG with its molecular weight higher than 40 kDa may encounter the metabolic issue of accumulation in tissues and organs,17 alternative hydrophobic polymers bearing saccharides like GAL and LBA have been expected with stealth effect and biological functions.

On the other hand, cholesterol, as an essential component of the plasma membrane, has been known to be involved in many cellular processes such as membrane property regulation, steroidogenesis, bile acid synthesis and cellular signal transduction.18,19 Meanwhile, a Niemann-Pick C1-like transmembrane protein (NPC1) mediates its intracellular uptake and transportation in living cells20 and the cholesterol translocate through lysosome-peroxisome membrane contacts.21 As for its potential application in drug delivery, cholesterol attached onto the N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymer drug conjugates could result in lowered blood clearance and enhanced accumulation in tumors than their dodecyl or oleic acid conjugated counterparts,22 and the strong hydrophobic interactions between the cholesterol and anticancer drugs played crucial roles in enhancing paclitaxel (PTX) drug loading levels.23 Notably, the cholesterol conjugates of amphiphilic copolymer vectors were further found to be capable of altering the DOX-loaded complex nanoparticle cellular internalization mechanism.24 In addition, cholesterol as an interesting natural rod-like mesogen has recently been explored for the structural design of new liquid crystalline (LC) organics, functional synthetic lipids, and linear–dendritic block LC copolymers.25–27 In particular, tailored block structural LC copolymer amphiphiles bearing grafted cholesterol like poly(ethylene glycol)-b-poly-(cholesterol acryloxy ethyl carbonate)s, poly(6-cholesteryloxypentanoate)-b-poly(methacrylic acid-co-6-cholesteryloxyhexyl methacrylate)s hereby denoted as PMAgala-b-P(MAA-co-MACHol) via RAFT copolymerization, and molecular structures of as-synthesized diblock terpolymers were further characterized by means of NMR, FTIR, and GPC. Then, the PMAgala-b-P(MAA-co-MACHol) supramolecular nanoparticles with/without DOX drug payloads were examined in terms of drug loading efficiency, micellar particle morphologies, and stability. The cytotoxicity of these prepared diblock terpolymer amphiphiles was evaluated by MTT assay with H1299 cells.

Finally, in vitro DOX drug release and their intracellular delivery by the PMAgala-b-P(MAA-co-MACHol) vectors were examined and discussed.

\section*{EXPERIMENTAL SECTION}

\textbf{Materials.} Cholesterol (97%), D-galactose (99%) and methacryloyl chloride (98%) were purchased from Shanghai Sinopharm Chemical Reagent Co. Ltd. (China) and utilized as-received. N,N’-Azobis(isobutyronitrile) (AIBN, 98%, Shanghai Sinopharm Chemical Reagent Co. Ltd.) was recrystallized twice from methanol prior to use. Tert-butyl methacrylate (BMA, 99%, Sigma-Aldrich) was purified via basic alumina gel column chromatography. RAFT agent of 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanylpentanoic acid (CDP) was prepared as referred to the literature.28 6-Cholesteryloxypentanoate methacrylate (MACHol) was synthesized and further purified as previously reported.29 Toluene was refluxed over metallic sodium and distilled before use. Fluorescent probe of pyrene (95%) for critical micelle concentration (CMC) measurement was bought from Aladdin Chemical Reagent Co. Ltd. (China). All other organics were commercially supplied and used as-received. In addition, cellulose dialysis membrane (MWCO 3500) was purchased from Shanghai Green Bird Science & Technology Development Co. Ltd. (China). Doxorubicin (DOX, 98%) was purchased from Zhejiang Hisun Pharmaceutical Co. Ltd. (China). Sodium dodecyl sulfate (SDS, 99%), fetal bovine serum (FBS, Cat#10099-141) and bovine serum albumin (BSA, Cat#0332) were purchased from Genebase Gene Tech Co. Ltd. (China). Invitrogen (USA) and Amresco (USA), respectively. Thiazoyl blue tetrazolium (MTT, Cat#M5655) was supplied by Sigma-Aldrich (USA). PARP antibody (Cat#9542) was received from Cell Signaling Technology, Inc. (USA). RPMI1640 (Cat#11875-093) and DMEM (Cat#11995-065) mediums were purchased from GIBCO (USA). \beta-tubulin antibody (Cat#MAN1003), sodium pyruvate solution (100X, Cat#MG6096), antibiotics penicillin (100 IU/mL) and streptomycin (100 \mu g/mL) (Cat#M7899), \gamma-glutamine (Cat#MG8042), horseradish peroxidase-linked rabbit antimuscle immunoglobulin (Cat#MAN4001), and horseradish peroxidase-conjugated goat antimuscle immunoglobulin G (Cat#MAN4002) were supplied by MesGen (China). Chemiluminescence kit (Cat#34077) was purchased from Pierce (USA). H1299 and HepG2 cell lines were kindly gifted by Dr. Bo Wan of Key Laboratory of Genetic Engineering of Fudan University (Shanghai, China).
Preparation of New Amphiphilic Diblock Terpolymers.

Synthesis of 6-O-Methacryloyl-1,2:3,4-di-O-isopropylidene-D-galactopyranosyl (MAIpGP) Monomer. MAIpGP was synthesized in a way partially referred to the literature. In brief, n-galactose was protected via reacting with acetic in the presence of concentrated H$_2$SO$_4$ (98%) and anhydrous CuSO$_4$, and then esterified with methacryloyl chloride in ice bath. After purification via column chromatography, the MAIpGP products were collected as white solids (yield of two steps: 64%).

Critical Micelle Concentration. Pyrene was utilized as fluorescence probe to determine the CMC of as-synthesized terpolymer amphiphiles. Briefly, 10 μL of pyrene/acetone solution was dried under vacuum to finally obtain yellowish PMAIPGP powders.

1 H NMR (CDCl$_3$, δ in ppm): 5.53 (d, Gal–H at 1 position), 4.62 (m, Gal–H at 3 position), 4.35–3.90 (m, Gal–H at 2, 4, 5, and 6 position), 2.35 (s, HOOCCH$_2$R).

FTIR Spectra. FTIR spectra were recorded on a Bio-Rad FTS-185 spectrometer at room temperature with 64 scans spanning a spectral range of 4000–500 cm$^{-1}$ with a resolution of 4 cm$^{-1}$. Samples were first well-dissolved in an organic solvent (chloroform or pyridine), and then drop-cast on potassium bromide (KB) pellets and dried prior to the measurement.

Elemental Analysis. Oxygen elemental analysis was routinely conducted on an Elementar vario EL III system (German).

Gel Permeation Chromatography (GPC). Molecular weights (M$_A$, M$_C$) and polydispersity (M$_w$/M$_n$) of the synthesized polymers were routinely measured at 35 °C on a PerkinElmer 200 GPC equipped with a refractive index detector (RI). THF was utilized as the eluent at a flow rate of 1.0 mL/min, and polystyrene standards (Polymer laboratories, U.K.) were applied to calibrate the GPC traces.

Dynamic Light Scattering (DLS). Particle sizes and zeta potentials of the amphiphilic micelles were analyzed at 25 or 37 °C on a Malvern Zetasizer Nano ZS90 DLS instrument with an angle of 90°.

Preparation of Diblock Terpolymer Amphiphiles and Their DOX-Loaded Micelles. The terpolymer amphiphiles and their DOX-loaded micelles were prepared in a way as following: In brief, 10.0 mg of each synthesized terpolymer amphiphile was first dissolved in 1 mL of THF/DMSO (1/1, v/v), and stirred at room temperature for 8 h. Then, 5 mL phosphate buffer (pH 7.4, 10 mM) was added dropwise into the mixture under vigorous stirring. The resultant solution was further dialyzed against deionized water for 48 h using a preswollen cellulose dialysis membrane (MWCO 3500) to remove residual solvent. In a similar way, DOX (10.0 mg) and triethylamine (TEA, 2 mol equiv. to DOX) were dissolved in 1 mL of DMSO, and stirred for 4 h, then 40.0 mg of terpolymer amphiphile preliminarily dissolved in 4 mL of THF/DMSO (1/1, v/v) was added. Afterward, 20 mL of phosphate buffer (pH 7.4, 10 mM) was gradually added into above mixture, and the DOX-loaded terpolymer amphiphile micelle solution was dialyzed in deionized water for 48 h to give drug-loaded amphiphile micelle aqueous solution. The DOX loading levels were accordingly measured by UV–vis spectrophotometer (UV-2800, Hitachi, Japan).

Critical Micelle Concentration. Pyrene was utilized as fluorescence probe to determine the CMC of as-synthesized terpolymer amphiphiles. Briefly, 10 μL of pyrene/acetone solution was dried under vacuum to finally obtain yellowish PMAlpGP powders.

1 H NMR (CDCl$_3$, δ in ppm): 5.53 (d, Gal–H at 1 position), 4.62 (m, Gal–H at 3 position), 4.35–3.90 (m, Gal–H at 2, 4, 5, and 6 position), 2.35 (s, HOOCCH$_2$R).

FTIR Spectra. FTIR spectra were recorded on a Bio-Rad FTS-185 spectrometer at room temperature with 64 scans spanning a spectral range of 4000–500 cm$^{-1}$ with a resolution of 4 cm$^{-1}$. Samples were first well-dissolved in an organic solvent (chloroform or pyridine), and then drop-cast on potassium bromide (KB) pellets and dried prior to the measurement.

Elemental Analysis. Oxygen elemental analysis was routinely conducted on an Elementar vario EL III system (German).

Gel Permeation Chromatography (GPC). Molecular weights (M$_A$, M$_C$) and polydispersity (M$_w$/M$_n$) of the synthesized polymers were routinely measured at 35 °C on a PerkinElmer 200 GPC equipped with a refractive index detector (RI). THF was utilized as the eluent at a flow rate of 1.0 mL/min, and polystyrene standards (Polymer laboratories, U.K.) were applied to calibrate the GPC traces.

Dynamic Light Scattering (DLS). Particle sizes and zeta potentials of the amphiphilic micelles were analyzed at 25 or 37 °C on a Malvern Zetasizer Nano ZS90 DLS instrument with an angle of 90°.
(1.2 × 10^{-4} \text{ M}) was placed into the terpolymer micelle aqueous solution under various mass concentration of 1 × 10^{-5} \sim 5 × 10^{-1} \text{ mg/mL} to adjust final 6.0 × 10^{-7} \text{ M pyrene in micelle solution, then kept at room temperature in the dark for 24 h before the measurement. Fluorescence spectra were recorded on a fluorescence spectrometer (F-7000, Hitachi, Japan) with an excitation wavelength of 334 nm and scanning wavelength of 350–450 nm, and fluorescence intensity ratios (I_{394}/I_{374}) were calculated, and plotted as a function of terpolymer concentration. The CMC for each terpolymer amphiphile was routinely determined as previously reported.11

Stability of DOX-Loaded Terpolymer Micelles. Stability of the DOX-loaded terpolymer amphiphile micelles (1.0 mg/mL) was examined by DLS, the SDS (100 \mu \text{g/mL}) was employed as a destabilizing agent, and light scattering intensity was continuously monitored by DLS at 37 °C over a period of 48 h. Similarly, average particle sizes of the DOX-loaded micelles in the presence of 10% FBS, BSA (0.3%, m/v) and 2 M NaCl were separately analyzed after 24 h incubation.

DOX Release in Vitro. DOX release profiles were examined at 37 °C under different pH for the drug-loaded terpolymer amphiphile micelles in three kinds of media: (a) acetate buffer, pH = 4.5, 10 mM; (b) phosphate buffer, pH = 6.5, 10 mM; (c) phosphate buffer, pH = 7.4, 10 mM. In brief, each DOX-loaded micelle solution (2.0 mg/mL, 3 mL) was placed into a cellulose dialysis membrane (MWCO 3500), and immersed into the above-mentioned media at 37 °C under gentle shaking. At predetermined time intervals, 2 mL release media was

Scheme 1. Synthetic Pathways for the Comonomers of MAIpGP (A), MAChol (B), and Amphiphilic Diblock Terpolymer PMAgala-b-P(MA-co-MAChol)s (C)
sampled for UV–vis analysis, and an equal volume of fresh media was added, and in vitro DOX release was routinely analyzed using a UV–vis spectrometer.10

MTT Assays. Cytotoxicities of as-prepared terpolymer micelles were assayed with H1299 cells by an MTT assay kit. Cells were first seeded into 96-well microplate (6 × 10^3 cells/well) with RPMI-1640 medium supplemented with 10% FBS, 1% L-glutamine, antibiotics penicillin (100 IU/mL), and streptomycin (100 μg/mL), and incubated for 24 h. Then, the medium was aspirated and replaced by 100 μL fresh medium with 10% FBS supplemented with micelle solution under various concentration of 0, 20, 50, 80, and 100 μg/mL, and kept cultivation at 37 °C under 5% CO2 for another 30 h. Afterward, 20 μL of MTT solution (5.0 mg/mL) was placed into the microplate replaced with 100 μL FBS-free fresh medium, and further incubated for another 2 h. One hundred microliters of DMSO was added into each well to dissolve the MTT-formazan, and light absorbances at λ = 490 were measured on microplate reader (BioTek, ELX800) with absorbances at λ = 630 nm as the reference. As a result, relative cell viability was evaluated with n = 5 as follows:

\[
\text{Cell viability} (\%) = \frac{(OD_{490\text{sample}} - OD_{630\text{sample}})}{(OD_{490\text{control}} - OD_{630\text{control}})} \times 100\%
\]

In a similar way, cell viabilities were also examined for the DOX-loaded diblock terpolymer amphiphile micelles and free DOX with H1299 and HepG2 cell lines. As for the MTT assay with HepG2 cell line, the HepG2 cells were first cultured with DMEM medium supplemented with 10% FBS, 1% L-glutamine, antibiotics penicillin (100 IU/mL), streptomycin (100 μg/mL), and sodium pyruvate (1 mM). After 24 h incubation, the medium was aspirated, and replaced by 100 μL fresh medium (with 10% FBS) supplemented with different amounts of DOX-loaded terpolymer micelles or free DOX to adjust final DOX concentration of 0.3, 1, 3, 5, 10, and 15 μg/mL, and kept incubation at 37 °C under 5% CO2 for 30 h. Thereafter, cell viability was thus assayed by the MTT assay kit.

Intracellular DOX Release. Cellular uptake and intracellular DOX release of the DOX-loaded micelles and free DOX control were examined with H1299 cells on microscope slides in a 6-well plate (5 × 10^3 cells/well) using RPMI-1640 medium with 10% FBS, 1% L-glutamine, antibiotics penicillin (100 IU/mL), and streptomycin (100 μg/mL), and then cells were incubated at 37 °C with either DOX-loaded micelles or free DOX for 1 and 6 h. After the removal of culture medium, the cells were rinsed three times with 1× PBS, and stained cell nuclei with Hoechst 33342, then fluorescence images were recorded on a Nikon Ti-S invert fluorescence microscope.

Western-Blot Assay. H1299 cells preliminarily treated with either free DOX or DOX-loaded micelles for 30 h were harvested and extracted with RIPA lysis buffer, and then incubated at 95 °C for 15 min. Total protein was separated by 8% SDS-PAGE, and blotted to nitrocellulose transfer membranes. The membranes were further blocked with 3% BSA TBST (20 mM Tris–HCl, pH 7.6, 137 mM NaCl, and 0.01% Tween-20) for 1 h at the room temperature, followed by incubation with PARP or β-tubulin primary antibodies at 4 °C overnight. After extensive washing with TBST, the membranes were allowed to be reprobed with horseradish peroxidase-linked antimouse immunoglobulin in 5% BSA TBST for 40 min, and unreacted antibodies were separated with TBST three times. Then, the membranes were subjected to Western-blot analysis with the signals from the primary antibody amplified by horseradish peroxidase-conjugated goat antimouse immunoglobulin G. Finally, the protein bands were detected and recorded by a chemiluminescence kit.

Results and Discussion

Synthesis and Characterization of Diblock Terpolymer PMAgala-b-P(MAA-co-MACHol). As for the preparation of functional glycopolymers, controlled radical polymerization has been widely employed as an effective synthetic approach.46 Lowe et al.47 reported the first RAFT polymerization of 6-O-methacyroyl-1,2,3,4-di-O-isopropylidene-D-galactopyranose (MAIpGP) monomer, and several dithioenzoate-type chain transfer agents (CTAs) have been explored in the MAIpGP RAFT polymerization.9,10,44 In this work, as shown in Scheme 1, the monomers of MAIpGP and MACHol were accordingly synthesized with good yields. Figures 1A,B depicts 1H NMR spectra for the MAIpGP and MACHol monomers, and the resonance signals were accordingly assigned.9,25 Furthermore, the PMAIpGP was prepared under an optimized reaction temperature of 80 °C in toluene through RAFT polymerization with AIBN and the synthesized CDP as the initiator and CTA, respectively, and the initial CTA/initiator molar ratios were hereby optimized to be 1/0.2.10

Figure 2A presents 1H NMR spectrum of the synthesized monomers of MAIpGP (A) and MACHol (B) in CDCl3.
Figure 2. \(^1\)H NMR spectra of the macro-RAFT initiator PMAlpGP\(_{18}\) (A), diblock terpolymer PMAlpGP\(_{18}\)-b-P(BMA\(_{16}\)-co-MACF\(_{12}\)) (B) in CDCl\(_3\) at room temperature, as well as PMAgal\(_{18}\)-b-P(MAA\(_{16}\)-co-MACF\(_{12}\)) amphiphiles (C) in pyridine-d\(_5\) at 80 °C.

Figure 3. Kinetics of RAFT polymerization of the MAIpGP monomer at 80 °C in toluene. (A) kinetic plot of the Ln([M]/[M]_0) as a function of reaction time, (B) monomer conversion dependence of number-average molecular weights (\(M_n\)) (■) and PDI(▲) of the products.
Ln([M]_0/[M]) versus reaction time (t) plots as seen in Figure 3A tend to exhibit a good linear relationship, inferring a pseudo-first order polymerization kinetics for the MAIpGP monomer. Moreover, Figure 3B shows the MAIpGP monomer conversion dependence of number-average molecular weight (M_n) by GPC, indicating a linear relationship with polydispersity indices (M_w/M_n) lower than 1.2, demonstrating controlled polymerization of the PMAIpGP.

To achieve amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MAChol)_b, the purified PMAIpGP were continuously employed as the macro-RAFT agents for successive random copolymerization of MAChol and BMA comonomers at 80 °C in toluene to give PMAIpGP-b-P(BMA-co-MAChol) precursors as shown in Scheme 1C, and Supporting Information Figure S1 depicts a copolymerization time dependence of the MAChol and BMA comonomer conversion under an initial MAChol/bBMA/macro-RAFT/AlBN feeding molar ratio of 15/25/1/0.2, and the observed similar consumption rates for these two comonomers may indicate the occurrence of random RAFT copolymerization of the second block. The resulted random comonomer sequence may be helpful for tuning the interactions and ordering of cholesterol mesogens and successive physical cross-linking of PMAgala-b-P(MAA-co-MAChol) micelles.34,35 Figure 2B shows typical 1H NMR spectrum for as-resulted PMAIpGP-b-P(BMA-co-MAChol), and GPC traces of the PMAIpGP macro-RAFT agent and as-synthesized series of diblock terpolymers are presented in Figure 4. In general, Table 1 summarizes synthetic results for the PMAIpGP macro-RAFT agent and PMAIpGP-b-P(BMA-co-MAChol)_b and the assigned 1H NMR resonance signals and high monomer conversions as well as low M_w/M_n values substantiated successful preparation of the PMAIpGP18-b-P(BMA-co-MAChol) precursors with narrow molecular weight distribution.

So far, TFA has already been known as a standard reagent to remove the tert-butyl and isopropylidene groups of protected galactoses, and has been reported to have less influence on the other type of ester structures and cholesterol skeleton.47−49 In this work, a reaction condition of TFA/DCM (1/2, v/v) for 32 h was employed to deprotect the terpolymer PMAIpGP18-b-P(BMA-co-MAChol) precursors. Figure S2C depicts FTIR spectra for the PMAIpGP18-b-P(BMA16-co-MAChol12) and achieved diblock terpolymer amphiphilic product, and a remarkable new emergence of broad IR absorption around 3300 cm⁻¹ assignable to the −OH stretch vibration of the resulted terpolymer amphiphile could be observed, indicating efficient tert-butyl and isopropylidene removals. Since the PMAgala-b-P(MAA-co-MAChol) terpolymer amphiphiles could not be well dissolved at room temperature in most of the commonly used deuterated solvent, temperature-resolved 1H NMR spectra with pyridine-d_5 solvent were recorded as shown in Figure S3, and the conditions of pyridine-d_5 solvent at 80 °C was used to record 1H NMR spectrum with better resolution for the PMAgala18-b-P(MAA16-co-MAChol12) as shown in Figure 2C. The theoretical and experimental resonance intensity ratios of the 1H signals at δ = 3.55−3.75 ppm (−CH_2-O-CHR of cholesterol grafts) to those at δ = 4.00−5.20 ppm (−CH_2=CO− and the Gla-H at 2, 3, 4, 5 position) were estimated to be 1/5.50 and 1/5.13, respectively. As a result, the galactose graft preservation could further be estimated to reach 91.7%. Since the 1H resonance signals of tert-butyl and isopropylidene groups around δ = 1.38−1.48 ppm overlapped with the signals of cholesterol skeleton, to give a deep insight into the deprotection of diblock terpolymer precursors, additional diblock copolymer analogues of PMAIpGP16-b-P(BMA16) and their deprotected PMAgala18-b-PMAA18 were synthesized, and 1H NMR spectra of the PMAIpGP16-b-P(BMA16) in DMSO-d_6 are depicted in Figure S2A,B. It could be clearly seen that after the deprotection in TFA/DCM, 1H resonance signals at δ = 1.40−1.47 ppm attributable to the tert-butyl and isopropylidene thoroughly disappeared, demonstrating efficient TFA-catalyzed removal of protecting groups. Furthermore, oxygen elemental analysis for the diblock terpolymer PMAIpGP16-b-P(BMA16-co-MAChol12) and PMAGala16-b-P(MAA16-co-MAChol12) amphiphile were conducted with the resulted oxygen elemental percentages of 19.88% and 23.41%, respectively, which agrees well with their corresponding theoretical values of 20.40% and 24.53% within the instrumental limit. Hence, the experimental evidence of 1H NMR and oxygen elemental analysis substantiate efficient deprotection with negligible cleavage of cholesterol/galactose grafts.

Furthermore, Figure S4 presents the recorded pictures of water-droplets on the thin film surfaces of as-synthesized series of diblock terpolymer amphiphiles, and the calculated contact angles tend to decrease from 106.4 ± 1.3°, 104.3 ± 0.9°, 100.2 ± 2.1° to 93.0 ± 2.5° with increasing MAA comonomer content, demonstrating the more hydrophilic physical properties. As for their thermal properties, thermostated polarized optical microscopic (POM) pictures and temperature-modulated DSC traces are shown in Figures S5 and S6, respectively. PMAGala18 homopolymer prepared by similar RAFT polymerization was observed to show feature fan-type texture of smectic A (SmA) LC phase as previously reported33,30 and glass transition temperatures (T_g) of the prepared diblock terpolymer amphiphiles were evaluated to increase from 27.7 °C, 42.0 °C, 46.0 to 54.9 °C along with increasing MAA comonomer content. Since the MAA repeating units are ionic comonomers, the phenomena of T_g increase in DSC traces for the terpolymer amphiphiles with more MAA units could be interpreted for their strong hydrogen bonding and ionic interactions in between.51 Moreover, no obvious liquid crystal phase transition was observed for the above-synthesized copolymers during the DSC cooling and heating scans (Figure

![Figure 4. GPC elution traces of the diblock terpolymer PMAIpGP-b-P(BMA-co-MAChol)_b along with their macro-RAFT initiator PMAIpGP_b.](image-url)
Table 1. Characteristics of the Synthesized Macro-RAFT Initiator PMAIpGP and Diblock Terpolymer PMAIpGP-b-P(‘BMA-co-MAChol)s

<table>
<thead>
<tr>
<th>entry</th>
<th>sample</th>
<th>conv. (%)</th>
<th>M_n, size (kg/mol)</th>
<th>M_w, GPC (kg/mol)</th>
<th>M_n</th>
<th>M_w</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$m/n/p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMAIpGP<sub>18</sub></td>
<td>90</td>
<td>6.32</td>
<td>4.92</td>
<td>5.56</td>
<td>1.12</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>PMAIpGP<sub>18</sub>-b-PMAC<sub>14</sub></td>
<td>85</td>
<td>13.9</td>
<td>12.8</td>
<td>16.2</td>
<td>1.26</td>
<td>18</td>
<td>-</td>
<td>14</td>
<td>36/14</td>
</tr>
<tr>
<td>3</td>
<td>PMAIpGP<sub>18</sub>-b-P(‘BMA<sub>14</sub>-co-MAChol<sub>14</sub>)</td>
<td>100<sup>a</sup>,70<sup>d</sup></td>
<td>14.8</td>
<td>13.1</td>
<td>15.3</td>
<td>1.17</td>
<td>18</td>
<td>5</td>
<td>14</td>
<td>34/34</td>
</tr>
<tr>
<td>4</td>
<td>PMAIpGP<sub>18</sub>-b-P(‘BMA<sub>14</sub>-co-MAChol<sub>14</sub>)</td>
<td>100<sup>a</sup>, 90<sup>d</sup></td>
<td>15.3</td>
<td>16.6</td>
<td>18.8</td>
<td>1.13</td>
<td>18</td>
<td>16</td>
<td>12</td>
<td>35/11</td>
</tr>
<tr>
<td>5</td>
<td>PMAIpGP<sub>18</sub>-b-P(‘BMA<sub>14</sub>-co-MAChol<sub>14</sub>)</td>
<td>88<sup>a</sup>, 90<sup>d</sup></td>
<td>15.0</td>
<td>16.2</td>
<td>19.5</td>
<td>1.20</td>
<td>18</td>
<td>26</td>
<td>9</td>
<td>37/19</td>
</tr>
</tbody>
</table>

The initial CDP/PMAIpGP/AIBN feeding molar ratio of entry 1 was 1/20/0.2, and initial macro-RAFT/’BMA/MAChol/AIBN feeding molar ratio of entry 2 to entry 5 were 1/0/16/0.2, 1/5/20/0.2, 1/16/13/0.2 and 1/30/10/0.2, respectively. Monomer conversion was determined by 1H NMR. Data express the monomer conversions of BMA and MAC. The M_n, M_w and polydispersity index (M_w/M_n) determined by GPC with polystyrene (PS) standards. x, y, and z represent average degrees of polymerization (DP) for the PMAIpGP, BMA and MACChol comonomer, respectively, and were evaluated by the comonomer conversion. m, n, p represent weight percentages of MAGala, MAA, and MACChol, respectively.

Table 2. Particle Sizes and Zeta Potentials As Well As The DOX-Loading Efficiencies for the Amphiphilic Diblock Terpolymer Micelles

<table>
<thead>
<tr>
<th>sample</th>
<th>blank micelles</th>
<th>DOX-loaded micelles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>size (nm)</td>
<td>PDI</td>
</tr>
<tr>
<td>PMAgala<sub>14</sub>-b-PMAC<sub>14</sub></td>
<td>140.2 ± 1.2</td>
<td>0.156</td>
</tr>
<tr>
<td>PMAgala<sub>14</sub>-b-P(MAA<sub>14</sub>-co-MAChol<sub>14</sub>)</td>
<td>48.9 ± 0.5</td>
<td>0.104</td>
</tr>
<tr>
<td>PMAgala<sub>14</sub>-b-P(MAA<sub>14</sub>-co-MAChol<sub>14</sub>)</td>
<td>68.1 ± 1.1</td>
<td>0.228</td>
</tr>
<tr>
<td>PMAgala<sub>14</sub>-b-P(MAA<sub>28</sub>-co-MAChol<sub>14</sub>)</td>
<td>94.9 ± 1.1</td>
<td>0.227</td>
</tr>
</tbody>
</table>

The data were calculated with a theoretical DOX loading content of 20 wt %.

Figure S7, and very low CMCs were calculated to be 1.41–2.82 mg/L for the PMAgala₁₄-b-PMAC₁₄ and the series of PMAgala₁₄-b-P(MAA₁₄-co-MAChol) as summarized in Table 2; these results suggest strong hydrophobic association of cholesterol grafts, which seems favorable for high micelle stability against extreme dilution during blood circulation in vivo. Figure 5 depicts particle sizes and morphologies of the PMAgala₁₄-b-P(MAA₂₈-co-MAChol₁₄) micelles characterized by DLS and TEM, respectively, and monodisperse spherical micelles could be observed by TEM with an average particle size of 94.9 ± 1.1 nm.

These results may be accounted for by the disturbed cholesterol stacking due to the presence of MAA comonomers in vicinity, and this would be beneficial for tuning micellar physical cross-linking, DOX loading, and intracellular drug release as discussed below.

Preparation of DOX-Loaded Supramolecular Micelles by the PMAgala₁₄-b-P(MAA₁₄-co-MAChol). To further exploit above-synthesized PMAgala₁₄-b-P(MAA₁₄-co-MAChol) as potential DOX delivery vectors, their CMCs in aqueous media were measured with pyrene as the fluorescent probe as shown in Figure S6B,C. These results may be accounted for by the disturbed cholesterol stacking due to the presence of MAA comonomers in vicinity, and this would be beneficial for tuning micellar physical cross-linking, DOX loading, and intracellular drug release as discussed below.
favorable for long circulation in vivo. Moreover, prevent their interactions with serum proteins, and thus be general, Table 2 summarized the micelle sizes for the observed for the PMAgala18-
physiological environment, larger terpolymer micelles could be P(MAA-
interact with negatively charged MAA carboxyl groups (p
cholesterols, it is known that the cholesterols in the micellar DOX encapsulation. As for the copolymer amphiphiles bearing cholesterol, it is known that the cholesterols in the micellar core could result in high drug loading due to hydrophobic interactions between the cholesterols and drugs; however, the cholesterols could also spontaneously form cholesterol LC phase, and thus decrease their interactions with drug molecules. On the evidence of DOX loading by the synthesized diblock terpolymer PMAgala18-b-P(MAA-co-MAChol), it could be demonstrated that hydrophobic association and ionic interaction between the MAA comonomer carboxyl and DOX significantly enhanced DOX loading for the diblock terpolymers, and random copolymer sequences in the second block limited cholesterol LC phase formation, as evidenced in Figure S5B/C.

Figure 6 presents stability assay results of the DOX-loaded complex micelles in aqueous media by DLS with SDS destabilizing agent (100 μg/mL) as referred. It could be seen that the light intensity of diblock PMAgala18-b-PMChol14/DOX micelle solution dropped down to 75% within 48 h after adding SDS, while the DOX-loaded complex micelles by three PMAgala18-b-P(MAA-co-MAChol)s showed excellent stability against SDS. Meanwhile, no significant particle size change was observed after incubating PMAgala18-b-P(MAA25-co-MAChol9)/DOX micelles under 2 M NaCl or 0.3% (m/v) BSA, and only slight swelling could be detected in 24 h with 10% FBS. These results inferred that the copolymerization of MAChol and MAA comonomers as the second block endowed excellent stability of DOX-loaded micelles.

Responsive DOX Release of Drug Loaded Diblock Terpolymer Micelles. Figure 7 depicts pH dependence of particle sizes for the DOX-loaded diblock terpolymer PMAgala18-b-P(MAA25-co-MAChol9) micelles at 37 °C in buffer solution by DLS. It could be seen that in acetate buffer (pH = 4.5), the initial terpolymer micelle size was around 90–100 nm, and the micelle sizes gradually increased along with the incubation time (0.5–16 h), and finally dual dispersive peaks respectively centering around 120 and 1000 nm were detected due to the destruction and aggregation of the DOX-loaded complex micelles. By contrast, after 24 h incubation in PBS buffer (pH = 7.4), the DOX-loaded PMAgala18-b-P(MAA25-co-MAChol9) micelles were just slightly swollen. Therefore, these results demonstrate strong pH dependence of the drug-loaded
terpolymer micelle sizes. Figure 8 shows in vitro DOX release profiles by the diblock PMAgala18-b-PMChol14 and diblock
terpolymer PMAgala18-b-P(MAA-co-MAChol)s in various media. At pH = 7.4, the drug slowly released, and only 7% DOX was released from the drug-loaded PMAgala18-b-P(MAA-co-MAChol) micelles, in comparison no more than 30% DOX being released from the diblock PMAgala18-b-PMChol14 micelles; this may infer that the copolymerization of MAA comonomer could not only stabilize the DOX-loaded terpolymer micelles, but also limit the DOX release at pH = 7.4. At pH = 6.5, the DOX release obviously accelerated, and cumulative drug release could reach 30~47% within 50 h. When pH was further decreased to 4.5, very fast and high cumulative DOX release could be observed for the amphiphilic drug carriers of PMAgala18-b-PMChol14 (57.7%), PMAgala18-b-P(MAA-co-MAChol14) (78.0%), PMAgala18-b-P(MAA-co-MAChol12) (75.0%), and PMAgala18-b-P(MAA-co-MAChol9) (90.3%), respectively. These results might be interpreted as, under pH condition below the pKₐ (5~6) of MAA carboxyl
groups, ionic interactions between the encapsulated DOX and MAA comonomers in amphiphile micelle cores were significantly weakened, while the water-solubility of the DOX molecules simultaneously increased due to the protonation of amino groups, and these finally led to responsive terpolymer micelle disassembly and fast DOX releases under the acidic environment.

Cell Viability Assay and Intracellular DOX Delivery by PMAgala-b-P(MAA-co-MAChol) Micelles. Continuously, cell toxicities of as-prepared diblock PMAgala18-b-PMChol14 and the series of terpolymer PMAgalaₗₘ-b-P(MAA-co-MAChol)s were assayed with human lung cancer H1299 cells, and the MTT assay results are shown in Figure S8. After 30 h incubation, negligible slight MTT toxicity could be observed under the amphiphile mass concentration up to 100 μg/mL, indicating excellent biocompatibility of the as-prepared terpolymer amphiphiles. Since the terpolymer PMAgala₁₈ₘ-b-P(MAAₙ₋₋ₗ₋₋-co-MACholₙ) has shown highly efficient DOX loading and pH responsive release, its DOX-loaded micelles were further employed to examine their cancer cell proliferation inhibition and intracellular DOX delivery. Figure 9 depicts H1299 and HepG2 cell viabilities after 30 h incubation in the presence of the PMAgala₁₈ₘ-b-P(MAAₙ₋₋ₗ₋₋-co-MACholₙ)/DOX micelles and free DOX under a series of DOX dosages. It could be seen that the presence of either DOX-loaded terpolymer micelles or free DOX unambiguously resulted in DOX-dosage dependent cell viability, and relatively lower tumor cell inhibition exhibited for the DOX-loaded terpolymer micelles under the same DOX dosage in both cell lines. The IC₅₀ values (half maximal inhibitory concentration) of DOX-loaded micelles were 13.34 μg DOX equiv/mL and 8.58 μg DOX equiv/mL toward H1299 cell line and HepG2 cell line, respectively, which are both higher than that of free DOX (6.74 μg/mL toward H1299 cell line and 6.67 μg/mL toward HepG2 cell line, respectively). These results indicated that the DOX-loaded complex micelles could be uptaken efficiently and release DOX in both H1299 and HepG2 cells, and the relatively lower tumor cell inhibition properties might be due to their different endocytic mechanisms as compared with free DOX and prolonged DOX release from the complex micelles as indicated in the in vitro DOX release profiles (Figure 8).61,62 Furthermore, since H1299 cells generally have the merits of easy morphology observation with good reproducibility during cell biological study, H1299 cells were chosen to give further insights into the DOX endocytosis and intracellular trafficking. As shown in Figure 10, for the free DOX, after 1 h incubation, strong red DOX fluorescence could be observed predominantly in cell nuclei, and the fluorescence intensity localized in the cell nuclei was found to become stronger after 6 h incubation. This may be due to fact that the DOX small molecules could freely penetrate through plasma membrane via fast diffusion and rapid intracellular traffic to cell nuclei. As for the DOX-loaded diblock terpolymer micelles, red DOX fluorescence was predominantly observed in cytoplasm after 1 h incubation, and significant DOX accumulation in cell nuclei could be seen after 6 h incubation, inferring that the DOX-loaded terpolymer micelles may be internalized into cells via endocytosis, and further release DOX in cytoplasm, and then deliver DOX into cell nuclei. These results are well consistent with the results of cell viability assay shown in Figure 9A and similar results as reported in the literature.66 Alternatively, it has already been known that the DOX is a topoisomerase II inhibitor, which could cause DNA damage
and cancer cell inhibition mainly by apoptosis. PARP, a 116 kDa nuclear poly(ADP-ribose) polymerase, has been known to be involved in DNA repair in response to environmental stress, and it is one of the main cleavage targets of caspase-3 in vivo. The PARP cleavage occurs between Asp214 and Gly215, which could separate the PARP N-terminal DNA binding domain (24 kDa) from the C-terminal catalytic domain (89 kDa), and the cleavage of PARP would facilitate cellular disassembly and serve as a marker of cells undergoing apoptosis. Figure 11 shows H1299 cell morphological images (A−C) recorded by bright-field microscopy with free DOX as the control, and obvious cell growth inhibition could be observed after the incubation for 30 h under a fixed DOX dosage of 10 μg/mL for the free DOX and DOX-loaded diblock terpolymer micelles. Moreover, Figure 11D presents the Western-blot analytic results for the cells treated with either free DOX or DOX-loaded terpolymer micelles, and notably up-regulated PARP cleavages could be clearly observed with β-tubulin as the internal reference, demonstrating the apoptosis of H1299 cells in the presence of either free DOX or DOX-loaded terpolymer micelles. The Western-blot experimental evidence indicate that the DOX delivered by the diblock terpolymer complex micelles could effectively result in cell apoptosis despite possible different trafficking routes of free DOX and DOX-loaded terpolymer complex micelles. Therefore, these infer that new diblock terpolymer micelles with efficient DOX loading and pH-responsive drug release may be further developed as future drug delivery carriers, as shown in Scheme 2, and continuous studies concerning liver cancer cell targeting and DOX-loaded complex particle autophagy in cells are now ongoing in this lab.
Scheme 2. Efficient Loading and Intracellular Release of the Doxorubicin (DOX) by pH-Responsive Micelles of New Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)\(_b\) Bearing Pendant Galactoses and Cholesterol Derivatives

CONCLUSION

In this study, we designed and successfully synthesized a series of amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MAChol)\(_b\) with side-attached galactose and cholesterol grafts. Structural and physical characterization demonstrated controlled RAFT copolymerization of the diblock terpolymers, and random copolymerization of the MAA and MACChol in the second block limited the formation of cholesterol LC phase, and the diblock terpolymers exhibited increased water-solubility when increasing their MAA comonomer composition. In aqueous solution, the PMAgala\(_{18}\)-b-PMACChol\(_{14}\) and PMAgala\(_{18}\)-b-P(MAA-co-MAChol)\(_b\) could self-assemble into micelles, and the diblock terpolymers could more efficiently encapsulate DOX with a DLE up to 91.2% with better complex micelle stability. In vitro DOX release profiles demonstrated high stability of the DOX-loaded terpolymer micelles under neutral condition and significantly fast responsive DOX release with cumulative release up to 90.3% could be observed; the higher MAA content of a diblock terpolymer tended to result in higher cumulative DOX release, strongly depending on the pH of buffer solution. MTT assay with H1299 cells indicated slight cytotoxicity of the PMAgala\(_{18}\)-b-PMACChol\(_{14}\) and PMAgala\(_{18}\)-b-P(MAA-co-MAChol)\(_b\). The results of fluorescence microscopy revealed that the DOX encapsulated in the synthesized diblock terpolymer PMAgala\(_{18}\)-b-P(MAA\(_{26}\)-co-MAChol)\(_b\)/DOX micelles could be uptaken and delivered into cell nuclei in an efficient way, and their intracellular trafficking pathway may be altered as compared with the free DOX control. In addition, Western-blot assay of the PARP biomarker indicated efficient apoptosis of H1299 cells by the PMAgala\(_{18}\)-b-P(MAA\(_{26}\)-co-MAChol)\(_b\)/DOX micelles similarly as the DOX control. Taking advantages of the DOX-loaded PMAgala-b-P(MAA-co-MAChol) micelles, these diblock terpolymers may be anticipated as potent vectors for controlled drug delivery in vivo.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biomac.5b01227

DOI: 10.1021/acs.biomac.5b01227

Biomacromolecules XXX, XXX, XXX-XXX

■ AUTHOR INFORMATION

Corresponding Author

*Phone: +86-21-5492-5303, fax: +86-21-5492-5537, E-mail: acao@sioc.ac.cn.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors are grateful to the financial supports partially from National Natural Science Foundation of China (21174160, 21002116 and 21372251).

■ REFERENCES

(49) Jiang, X.; Zhao, B. *Macromolecules* 2008, 41, 9366−9375.
