Synthesis and Structural Characterization of 1,2,4-Diazaphospholide Complexes of Titanium(IV) and Titanium(III)

Wenjun Zheng,*,†,‡ Ibon Alkorta,§ Dongming Yang,‡ Li Wan,⊥ Mingang Zhao,‡ and José Elguero§

1 Institute of Organic Chemistry, ‡College of Chemical and Materials Science, Shansi Normal University, Gongyuan Street 1, Linfen, Shanshi Province 041004, China
† Department of Chemistry, Fudan University, Handan Road 220, Shanghai 200433, China
§ Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain

ABSTRACT: Two 1,2,4-diazaphospholide complexes of [Ti(η^2-3,5-Ph_2dp)_4]** and paramagnetic [Ti(η^3-3,5-Bu_2dp)_3]** were prepared by the reaction of tetrakis-(dimethylamido) titanium(IV) with 3,5-diphenyl-1,2,4-diazaphosphole, H[3,5-Ph_2dp], or by the treatment of 3,5-tert-butyl-1,2,4-diazaphospholide potassium, K[3,5-tBu_2dp], with titanium trichloride. Complexes can be viewed as the core of P(σ^2\lambda)2-functionalized metalloendrimers, in which the metal atoms are exclusively η^2(N,N) bonding to the 1,2,4-diazaphospholides while P atoms (σ^2\lambda) with electron lone pairs are located on the periphery of the molecules.

Metalloendrimers represent a new class of dendrimers in which metal ions have been incorporated into the different sites of the dendritic structure: the core unit, the branches, the branching centers, or the periphery of the dendrimers.1 Advantages to using metalloendrimers with catalysts on the periphery include their increased multivalency (higher local concentration), which allows for enhanced reaction rates, and the possibility of separating the catalysts from the reaction medium, for example, through precipitation or ultrafiltration using membrane reactors.

The modified ligands (or coordination compounds) containing low-coordination P atoms (σ^2\lambda) are stronger π acceptors toward low-valent transition metals than, for example, tertiary phosphines.2,3 The complexes bearing such ligands (or coordination compounds) have demonstrated to be highly active and selective catalysts in different organic transformations.3,4 The 1,2,4-diazaphospholides (dp) are a mixed N–P(σ^2\lambda)2 heteroaromatic system and have been recently applied to the preparation of the corresponding complexes5,6 in which P atoms (σ^2\lambda) have donor lone pairs available.6 Subsequent work has shown that the metal 1,2,4-diazaphospholides played an important role as efficient ligands in the palladium-catalyzed Heck reaction, where bimetallic complexes may form with P–Pd π-back-bonding.7 Impetus was provided by the results6,7 that 1,2,4-diazaphospholide complexes may provide a unique molecular environment, especially in the higher local concentration of low-valent P(σ^2\lambda) on the periphery of the molecule, for the coordinated catalysts7 or for the redox-active species.6,7 Herein, we describe the synthetic approach to the dendritic core structures of 1,2,4-diazaphospholide titanium(IV) and titanium(III) with an exclusive η^2(N,N) coordination. B3LYP/6-311G* and B3LYP/LANL2DZ calculations were used to rationalize the bonding structures of the complexes.

The reaction of Ti(NMe_2)_4 and [3,5-Ph_2dp]H (1)8 in toluene at reflux afforded [Ti(η^2-3,5-Ph_2dp)_4]** 3THF (2:3THF, where THF = tetrahydrofuran) as a red solid (60%), while the treatment of TiCl_3(THF)_3** 9 and [3,5-tBu_2dp]K (3)10 in ether smoothly led to complex [Ti(η^2-3,5-tBu_2dp)_3]** (4) as blue-purple crystals (75%), as shown in Scheme 1. 2 is well soluble in THF and warm toluene, while 4 is soluble in common organic solvents.10

Scheme 1. Synthesis of Complexes 2 and 4

An X-ray crystal structure determination of 2 and 4 was carried out.10,11 Both 2 and 4 can be regarded as possible cores of dendritic titanium 1,2,4-diazaphospholides with endo bidentate η^2(N,N) coordination (Figures 1 and 2). The ligands at titanium(IV) in 2 arrange in closer tweezer arms with dihedral angles of 78.8°. With a dihedral angle of 178.5° between the plane defined by the atoms N1, N2, and Ti and the plane of the heterocyclic core (N1, N2, C1, C2, and P1), the observed conformation involving the donation of the in-plane N atom lone pairs to the metal center is similar to that found in the η^3(N,N)-pyrazolato (pz) titanium complex [Ti(η^3-3,5-Ph_3pz)_2]** (5).12 Such similarity likely stems from the phosphorus conjugative ability to be comparable to that of carbon.13 Compound 2 does not attain coordination saturation in a 16-electron system, presumably attributed to the steric...
The crystal structure of 4 shows that 1,2,4-diazaphospholes are coordinated to Ti atoms with nearly perfect \(\eta^2 \) geometry, with Ti–N bond lengths ranging from 2.024(5) to 2.048(4) Å, comparable to those found in \([\text{Ti}(\eta^2,\text{5-S-Bu},\text{pz})_3] \) \([\text{Ti}–\text{N} 2.048(3) \text{ Å}] \).\(^{15} \) The N–Ti–N angles within each \(\eta^2 \)-1,2,4-diazaphospholide are also very similar, and vary from 39.13(17) to 39.39(17)°, but are slightly wider than those found in 2.

The \(^{31}\text{P}(^1\text{H}) \) NMR resonance of 2 (THF-\(\text{d}_8 \) 23 °C) is observed at 145.3 ppm, which is significantly shifted downfield relative to the corresponding signals of the free heterocyclic ligand \(\text{H}[\text{3,5-Ph}_{2}\text{dp}] \) \((\text{31P} \delta = +74.3 \text{ ppm}) \), the potassium salt \(\text{K}[\text{3,5-Ph}_{2}\text{dp}] \) \((\text{31P} \delta = +67.19 \text{ ppm}) \), and the 1-methyl-1,2,4-diazaphospholide \((\text{31P} \delta = +93.8 \text{ ppm}) \),\(^{16} \) clearly assigned to the electron-withdrawing character of the Ti\(^{IV} \) ion. However, the \(^{31}\text{P}(^1\text{H}) \) NMR resonance of 4 (C\(_6\)D\(_6\) 23 °C) is observed at 66.9 ppm, which is only shifted downfield about 1.5 and 16.2 ppm relative to the corresponding signals of the free heterocyclic ligand \(\text{H}[\text{3,5-Ph}_{2}\text{dp}] \) \((\text{31P} \delta = +65.4 \text{ ppm}) \) and potassium salt \(\text{K}[\text{3,5-Ph}_{2}\text{dp}] \) \((\text{31P} \delta = +50.7 \text{ ppm}) \), respectively. The \(^1\text{H} \) NMR (C\(_6\)D\(_6\) 23 °C) spectrum of 4 shows only one broad resonance at \(\delta = 2.35 \text{ ppm} \) (\(\delta_{\text{H}_{\text{Bu}}} = 0.6 \text{ ppm} \)), attributable to the \(\text{Bu} \) groups of the ligands. However, the resonances in the \(^{13}\text{C}(^1\text{H}) \) NMR (C\(_6\)D\(_6\) 23 °C) spectrum are very weak even after 10 240 scans. The unusual resonances in \(^{30}\text{P}(^1\text{H}), ^{1}\text{H}, \) and \(^{31}\text{P}(^1\text{H}) \) NMR spectra are likely due to the paramagnetic properties of 4 (3d\(^3\)).

To help in understanding the structures of 2 and 4, we carried out B3LYP/LANLD2DZ and B3LYP/6-311G* calculations on model compounds in which we replaced the phenyl groups by H atoms. We have also calculated a model of compound 5 closely related to 2m (Scheme 2).\(^{17} \)

Table 1. Polytoral \(\delta \) Angles of Four-Coordinated Titanium(IV) Derivatives

<table>
<thead>
<tr>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
<th>(\delta_5)</th>
<th>(\text{average})</th>
<th>(\text{average})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>136</td>
<td>138</td>
<td>99</td>
<td>98</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>2m(^{\text{f}})</td>
<td>133</td>
<td>133</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>2m(^{\text{b}})</td>
<td>134</td>
<td>134</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>s</td>
<td>139</td>
<td>140</td>
<td>97</td>
<td>97</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>5m(^{\text{f}})</td>
<td>133</td>
<td>133</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>5m(^{\text{b}})</td>
<td>133</td>
<td>133</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>c</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>d</td>
<td>180</td>
<td>180</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

\(^{\text{f}} \) Full 6-311G*. \(^{\text{b}} \) LANLD2DZ. \(^{\text{f}} \) Tetrahedron T\(_{\text{dd}}\). \(^{\text{b}} \) Planar D\(_{\text{dd}}\).

To discuss the geometry of 2 and 2m, it is better to consider them tetrahedral than octahedral because of the rigidity imposed to the N–N bond by the heterocycles (dp and pz). Taking the middle point between both N atoms as a dummy, we have calculated at two theoretical levels (B3LYP/LANLD2DZ) the \(\delta \) Muetties’ d–Ti–d angles (Table 1).\(^{18} \)

The main conclusions from the Table 1 data are as follows: (i) the calculation reproduced very well the experimental geometries (including the Ti–N distances; see the Supporting Information), proving that the phenyl rings can be considered as a perturbation; (ii) the tetrahedral distortion is small (the mean value of the six compounds of 110.7° is much closer to \(T_d \) than to \(D_{\text{dd}} \); (iii) compounds 2 and 5 are very similar; i.e., diazaphospholes and pyrazoles are geometrically almost identical.

The electron density maps of 2m (Figure 3) and 5m calculated at the B3LYP/6-311G* computational level present a bond path between the Ti atom and each of the N atoms of the dp/pz rings.

In conclusion, we present titanium(IV) and titanium(III) 1,2,4-diazaphospholes with \(\eta^2(\text{N,N}) \) coordination, in which three or four low-coordination P atoms with electron lone pairs on the periphery of molecule are available. With the bulkiness of two adjacent tert-butyl or phenyl groups beside the P atom.

Figure 1. Molecular structure of 2. H atoms are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ti(1)–N(1) 2.071(5), Ti(1)–N(2) 2.058(5); N(3)–Ti(1)–N(4) 38.02(17).

Figure 2. Molecular structure of 4. H atoms are omitted for clarity. Two of the \(\text{Bu} \) groups are disordered. Selected bond lengths [Å] and angles [deg]: Ti(1)–N(1) 2.045(4), Ti(1)–N(2) 2.048(4); N(3)–Ti(1)–N(4) 39.26(16).

dx.doi.org/10.1021/ic2021066 | Inorg. Chem. 2011, 50, 12408–12410
The complexes are reminiscent of the phosphaferrrocenes with sp²-hybridized P atoms and the pseudoruthenocene complexes incorporating dp ligands, which have a marked tendency to engage in metal-to-phosphorus π-back-bonding.²⁻⁴,⁶ The present work demonstrates that the complexes with η²(N,N)-1,2,4-diazaphospholide coordination are easily obtained because the hard metal ions are liable to binding to the more negative side (N,N) of the heterocyclic ring, as has been predicted by theoretical calculation.⁶ This allows variation of the metal centers in complexes with η²(N,N)-1,2,4-diazaphospholide coordination and renders the possibility of finely tuning the electronic properties of transition metals (soft metal ions) bonded to the P atoms, which might be further advantageous in terms of the catalyst lifetime, sensitivity, selectivity, etc.¹⁹ Despite the similarity of the geometries to titanium pyrazolates,¹²,¹³ complexes 2 and 4 are expected to be in an extraordinary nature because of the unique structure and redox-active behavior of the 1,2,4-diazaphospholide ligand.⁶ Work is proceeding along these lines.

Computational Details. Geometries were optimized at the B3LYP/6-311G*⁴ and B3LYP/LANL2DZ¹⁵ levels using Gaussian 03.²³ Frequency calculations were performed at the same level to confirm that they correspond to energy minima.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures, analytical and spectroscopic data for 2 and 4, details of the calculations of the full geometries of 2m and 5m (B3LYP/6-311G* and B3LYP/LANL2DZ), and X-ray crystallographic files for 2 and 4 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: wjzheng@sxnu.edu.cn.

ACKNOWLEDGMENTS

W.Z. is thankful to the National Nature Science Foundation of China (Grant 20872017) and Shanxi Normal University. L.A. and J.E. are thankful to the Ministerio de Ciencia y Tecnología of Spain (Project CTQ2006-14487-C02-01/BQU).

REFERENCES

(9) TiCl₃(THF) was prepared according to the literature. Jones, N. A.; Liddle, S. T.; Wilson, C.; Arnold, P. L. Organometallics 2007, 26, 7553.
(10) Synthetic procedures, analytical and spectroscopic data, crystallographic data for 2 and 4, details of the calculations for model complexes 2m and 5m are contained in the Supporting Information.
(22) Frisch, M. J., et al. Gaussian 03; Gaussian, Inc.: Pittsburgh, PA, 2003. For the full reference, see the Supporting Information.