Silver-Catalyzed Amidiniumation of Alkynes: Isolation of a Silver Intermediate, Synthesis of Enamine Amido Carbene Precursors, and an Unprecedented Umpolung of Propiolamide

Shichang Lv, Jiwei Wang, Caiyun Zhang, Sheng Xu, Min Shi, and Jun Zhang*

Abstract: A silver-catalyzed amidiniumation of N-propiolic formamidines for the synthesis of novel enamine amido carbene precursors is reported. Isolation of a first silver intermediate in silver-catalyzed amidiniumation of alkynes and other organogold intermediates supports our proposed mechanisms. Several control experiments reveal the unexpected effects of both HOTf and substrate substituents on the choice of either a π or α,π silver activation mode and the cyclization fashion. Bis(hydroxyimidazol)ium salts were obtained through an unprecedented umpolung of propiolamides. The byproduct Ag₂O as either an oxidant or silver source promotes the syntheses of N-heterocyclic carbene (NHC) precursors or Ag/NHC complexes.

Over the last twenty years, N-heterocyclic carbenes (NHCs) have attracted much attention because of their widespread and spectacular applications as ligands in organometallic catalysis and as organocatalysts.[1] Besides the versatile applications of NHCs in catalysis, Bertrand and co-workers discovered cyclic alkyl amino carbenes are capable of either activating H₂ and NH₃, or fixing carbon monoxide (CO).[2] Shortly after the initial results, several groups proved that the incorporation of carbonyl moieties into the NHC backbone could largely influence its electronic properties and reactivity.[3–6] Bielawski and co-workers reported that the six-membered diamidocarbene (DAC) I was more electrophilic compared to typical NHCs (Figure 1), and favored N–H and C–H bond activation, reversibly fixing CO, coupling to isonitriles, and [2+1] cycloaddition of olefins, aldehydes, alkynes, and nitriles.[4] The five-membered DAC II, reported by the groups of Bielawski[4h] and Ganter,[9a–c] and the six-membered amino-acrylamido carbene III, reported by Hudnall and co-workers,[9e] also display similar electrophilic properties. We envision that decorating NHCs with a conjugated backbone containing an α,β-unsaturated carbonyl moiety would provide the NHC with additional stability and exhibit unprecedented electronic properties, thereby showing distinct reactivity behavior. Keeping this thought in mind, we designed the enamine amido carbenes IV and V. (Figure 1) The electron density in IV and V would be localized on the π* orbitals of both the olefin and carbonyl group attached directly to the nitrogen atoms, thus rendering them less nucleophilic.

Since 2011, we have developed several methodologies for the preparation of various azolium salts as NHC precursors, starting from functionalized formamidines.[7] Aiming at construction the scaffolds of IV and V, we expected a metal-catalyzed intramolecular amidiniumation of N-propiolic formamidines could probably be a practical method. Although transition-metal-catalyzed intramolecular hydroamination and hydroamidation of alkynes[8] have been well-established, the cyclization of N-alkynyl formamidines to afford cyclic formamidinium salts, the direct precursors of NHCs, is unknown. In the past ten years, gold,[9] and silver-catalyzed[10] reactions of alkynes have attracted considerable interest because of their high selectivity and mild reaction conditions. Besides π and α gold activation modes,[9] the presence of a α,π activation mode was first proposed by Toste, Houk et al. for gold-catalyzed reactions of terminal alkynes,[11] and this dual-activation concept has been applied in a variety of cyclization reactions by several groups.[12] Compared with the analogous gold species,[10] the silver intermediates are highly reactive. Because the Ag–C bonds in silver intermediates are vulnerable to attack by electrophiles—mostly protons, they are rarely isolated because of the presence of a trace amount of water in the reaction mixture. Partially because of the lack of the isolable organosilver intermediate, the reaction mechanism for silver-catalyzed transformations is much less investigated, and its general reaction mode remains little understood compared to that for the gold-catalyzed reaction. Generally, under a π silver activation mode, the activated alkyn becomes prone to nucleophilic attack. For a terminal or a silylated alkyn, the silver π complex could be converted into silver acetylide,[13,14] Unlike its gold acetylido analogue, silver acetylide is commonly studied and used to date as

Figure 1. Selected amido NHCs I–III and targeted NHCs IV and V.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201508221.
a nucleophile to react with various electrophiles or as the transmetallation intermediate in cross-coupling reactions. So we were wondering if silver acetylides could undergo π activation by another silver salt and then undergo attack by nucleophiles, as do α,π gold activated alkynes (Scheme 1).

Scheme 1. Selected gold and silver activation modes in alkyne activation.

Herein, we report the first silver-catalyzed regioselective synthesis of enamine amidocarbene precursors through amidiniumation of N-propioic formamidines, and describe the unexpected effects of both HOTf and substrate substituents on the choice of either the π- or α,π silver activation mode. Isolation of the first organosilver intermediate in silver-catalyzed amidiniumation of alkynes, an unprecedented umpolung of propiolamide, and the reuse of the byproduct AgO₂ to promote another reaction in a one-pot reaction are also reported (Scheme 2).

Scheme 2. Regiodivergent silver-catalyzed amidiniumation of N-propioic formamidines and isolation of a key silver intermediate. Tf=trifluoromethanesulfonyl.

Various N-propioic formamidines were prepared by the acylation of the N,N'-diarylformamidine with various substituted propionic acids, in the presence of N,N'-dicyclohexylcarbodiimide, in 42–74% yield (see Scheme S1 in the Supporting Information). First, the formamidines 1a and 1b, bearing a terminal alkyne, were investigated in the silver-activated amidiniumation. Surprisingly, both 1a and 1b, in the presence of HOTf (1 equiv) and AgOTf (5 mol%), underwent cyclization to afford the trans-vinylene-bridged bis-(hydroxyimidazol)ium salts 2a and 2b, respectively, with excellent yields [Eq. (1)]. 1H NMR analysis of 2a and 2b shows only one set of proton signals in the aromatic region and one signal for the vinylene proton at δ = 6.29 ppm for 2a and at δ = 6.41 ppm for 2b, thus indicating a symmetric structure for both 2a and 2b. By using a stoichiometric amount of AgOTf, 1a underwent 6-endo-dig cyclization to form the six-membered formamidinium salt 3a, while cyclization of 1b, having bulkier N-Dipp substituents, afforded the asymmetric formamidinium salt 4 containing an imidazolone ring and an imidazolidinone ring with a hydroxy group attached [Eq. (2)]. The structures of 2b and 4 have been unequivocally confirmed by X-ray diffraction analysis (see Figures S3 and S4 in the Supporting Information). Delightfully, 2b could be transformed into 4 by treatment with AgO₂ at room temperature [Eq. (3); DCE = 1,2-dichloroethane]. AgO₂, a byproduct of such AgOTf-mediated amidiniumations (see below), probably served as the oxidant for the oxidation of 2b into 4. The hydroxy group in 4 probably contributes to the attack of H₂O at the formamidinium carbon atom.

The regiochemistries observed here are quite intriguing, and further efforts have been focused on the investigation of the mechanism. Based on our observations, we proposed plausible mechanisms for these divergent transformations. In the catalytic mode, the addition of HOTf first leads to the formation of the formamidinium salt A (Scheme 3). Upon activation by AgOTf, A undergoes hydroamidiniumation in a 5-exo-dig fashion, and subsequent hydrolysis offers the five-membered formamidinium salt B, which is highly reactive and represents a rare example of the umpolung of propiolamide. Consequent nucleophilic attack by B on another molecule of B leads to the formation of the intermediate C, which

Scheme 3. Proposed mechanism for the formation of 2 in the presence of HOTf.
undergoes proton transfer and isomerization to generate the bis(hydroxyimidazol)ium salt 2.

Phosphine-catalyzed d1 to a1 umpolung of alkynoates and phosphine-catalyzed d2 to a2 umpolung of alkynoates bearing a hydrogen atom or an aromatic ring have been reported, and the resulting vinyl phosphonium intermediates can undergo an attack by various nucleophiles (Scheme 4a). A 5-exo-dig cyclization of I catalyzed by AgOTf allows transfer of the nucleophile property at the β-carbon atom, thereby forming a five-membered intermediate (B), which represents an unprecedented a3 to d3 umpolung of propiolamide (Scheme 4b).

It is known that treating a terminal alkyne with a silver salt first generates a π complex intermediate, which, upon addition of bases such as amines, immediately undergoes deprotonation to afford the silver acetylide. Despite being quite stable, silver acetylide could undergo hydrolysis upon addition of strong acids, such as either HCl, HNO₃, or HOTf. Therefore, we speculate that, in the stoichiometric reaction, the imine moiety in 1b could react as a base to promote the generation of silver acetylide and subsequently release HOTf, and subsequent protonation affords the alkynyl silver intermediate (Scheme 5). Upon activation with a silver salt, D undergoes 5-exo-dig cyclization to generate the silver intermediate E, which is hydrolyzed to offer B and release Ag₂O.

Finally, 2b generated from B is oxidized by the resulting Ag₂O to give 4. Compared to 1a, 1b has more electron density on N because the twist, imposed by the two bulkier ortho-isopropyl substituents, of the Ar–N bond results in smaller electron delocalization into the aryl ring. Therefore, 1a bearing a less basic imino moiety preferred to directly undergo 6-endo-dig cyclization through a π silver activation mode to form the silver intermediate F instead of generating the N-Mes counterpart of the alkynyl silver intermediate D. Choice of a 6-endo-dig cyclization mode for 1a is probably due to there being a positive charge on the β-carbon atom (C6). Subsequent hydrolysis of F offers the six-membered formamidinium salt 3a.

To prove that the catalytic pathway involves the formation of B, and that B also could be generated from its silver counterpart E in a stoichiometric pathway, the reactivity of a gold salt toward the amidiniumation reaction was examined. Delightfully, reacting IPrAuOTf [IPr = 2,6-bis(diisopropylphenyl)imidazol-2-ylidene] with 1b offered a stable five-membered gold species (5), a gold counterpart to E [Eq. (4)]. The formation of 5 was unequivocally confirmed by X-ray crystallography (Figure 2).[15] In 5, the Au1–C16 bond [2.004(9) Å] formed through amidinination is shorter than the Au1–C29 bond [2.060(7) Å] in the IPrAu moiety. The gold species 5 represents a rare gold intermediate in gold-catalyzed exo-dig cyclization of terminal alkynes. Only one isolable vinyl gold species derived from a terminal alkyne was reported by Hashmi and co-workers before.[20a] Interestingly, hydrolysis of 5 with HOTf can immediately afford the bis(hydroxyimidazol)ium salt 2b with excellent yield, thus indicating the formation of B during the process [Eq. (4)].

Considering that protonation of the imino moiety by HOTf, released during the generation of alkynyl silver, led to...
a 5-exo-dig amidination, we designed a control experiment with addition of a base to preclude the protonation of imino moieties in the stoichiometric AgOTf-promoted cyclization of 1b. Addition of a base could also slow down the protodemetalation to conserve the organometallic species, which Hashmi et al. used to obtain the vinylgold intermediates.[19a] Delightfully, in the presence of Et₃N as a base, a stable silver species (6) was isolated through a 6-endo-dig cyclization [Eq. (5)]. Further hydrolysis of 6 afforded the corresponding six-membered formamidinum salt 3b. The formation of 3b was further confirmed by X-ray crystallography (see Figure S5 in the Supporting Information).[15] Formation of 6 was confirmed by the disappearance of the signal for the β-carbon (C6) proton in 3b at δ = 8.17 ppm and an upfield shift of the signal for the α-carbon (C5) proton (from δ = 7.19 ppm in 3b to δ = 6.41 ppm in 6) and the formamidine (C2) proton (from δ = 9.90 ppm in 3b to δ = 8.97 ppm in 6), thus suggesting the loss of cationic character. HRMS evidence indicates one silver atom is associated with two cyclic formamide rings in 6. Based on the above observation, we assume that 6 is a bis(NHC) silver complex, where its carbenic atom is at β-carbon (C6) position. The silver species 6 represents the first isolable silver intermediate in silver-catalyzed amination of alkynes. Compared to other highly sensitive vinyl silver complexes, the increased stability of 6 is probably attributed to the formation of an αNHC ring during the cyclization and the presence of a bulky N-Dipp adjacent to the carbenic atom. Upon treatment of 6 with a large excess of DOTf, deuterium incorporation (45% D) was observed at the 6-position of [D]-3b [Eq. (6)].

Next, the formamidines 7a and 7b, having an internal alkene, were examined. Surprisingly, reaction of 7a with 1 equivalent AgOTf for 30 minutes at 80°C or for 3 hours at 15°C in DCE led to the formation of a stable cationic bis(NHC) silver complex (8a) in 57% yield, instead of the expected cyclic formamidinum salt [Eq. (7)]. 8a contains two six-membered rings NHCs, which were formed through a 6-endo-dig cyclization. Both the loss of the characteristic formamidinum proton signal in the 1H NMR spectrum, and the X-ray diffraction analysis (see Figure S6 in the Supporting Information)[15] confirmed the formation of 8a. Under the same reaction conditions, the bulkier 7b also underwent cyclization to afford the corresponding bis(NHC) silver complex 8b in 75% yield.

Several control experiments were designed to gain mechanistic insight into the unexpected formation of 8a and heating the solution of 7b and AgOTf (1 equiv) in CDCl₃ at 45°C for 25 minutes, the signals of 9b and 8b began to show up in a ratio of 0.54:1 in 50.5% yield (NMR; see Scheme S2 in the Supporting Information). About a 100% conversion of G into 9b and 8b was achieved within 65 minutes with a ratio of 0.11:1. Based on the above observation, we speculate that the coordination of the triple bond in 7 to AgOTf forms G, and subsequent attack of the nitrogen atom at the triple bond leads to the highly active silver intermediate H, which rapidly undergoes protonolysis to yield 9, and simultaneously releases Ag₂O. Then 9 reacts with the byproduct Ag₂O to generate 8 (Scheme 6).

By using this method, the mono-NHC silver complex 10 could also be obtained, in the presence of PPh₃, in high yield [Eq. (9)]. The formation of 10 was confirmed by X-ray crystallography (see Figure S8 in the Supporting Information).[21] The process provides a novel route for direct synthesis of silver carbene complexes and does not necessitate the preparation of a carbene precursor salt in advance. To
gain more mechanistic insight, the aurated species 11 was prepared from the stoichiometric reaction of AuCl MeS with 7b [Eq. (9)]. X-ray crystallography undoubtedly confirmed the formation of 11 (Figure 2)).[13] The Au–C bond [2.005 (8) Å] is similar to that observed for the abnormal thiazol-5-silylend gold complex [2.005 (14) Å][20] and shorter than those in vinyl gold complexes (2.04–2.06 Å).[13] thus indicating that 11 is more like an abnormal carbene (πNHC) complex than a vinyl gold complex. The aurated species 11 represents a scarce example of a nonheteroatom-substituted carbene coinage-metal complex.[21] In the presence of 5 mol% of AgOTf and HOTf, the formamidinium salts 9a and 9b could be catalytically synthesized through cyclization of 7a and 7b, respectively, with excellent yields [Eq. (10)]. In the absence of AgOTf, only trace amounts of 9a and 9b were observed at 25°C after 8 hours.

In summary, we have developed a silver-catalyzed amidination of N-propionyl formamidines for the synthesis of novel enamine amido carbene precursors. Isolation of a first organosilver intermediate and organogold intermediates support our proposed mechanisms. Several control experiments reveal the unexpected effects of both HOTf and substrate substituents on the choice of either a π- or α-carbene silver activation mode and the reaction process (5-exo-dig or 6-endo-dig). An unprecedented umpolung of propiolamide is also developed for theimerization of the cyclization product.

Acknowledgements

Financial support from the Shanghai Pujiang Talent Program (11PJ1402500) and the National Natural Science Foundation of China for financial support (21171056) is greatly acknowledged.

Keywords: alkynes · carbenes · cyclizations · reaction mechanisms · silver

How to cite: Angew. Chem. Int. Ed. 2015, 54, 14941–14946
Angew. Chem. 2015, 127, 15154–15159
