Rapid microwave-assisted synthesis of polydextrose and identification of structure and function

Haisong Wang^a,b, Yonghui Shi^b, Guowei Le^a,b,*

^a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
^b State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China

1. Introduction

Polydextrose has been identified as a source of dietary fiber in foods and beverages in many countries. Due to its good processing performance and potential health benefits, it is widely used as low-energy bulking agent in a variety of foods and a partial replacement for fat and starch (Cerna et al., 2003). Previous clinical studies revealed that polydextrose induces physiological effects, such as increasing fecal bulking, softening stools, decreasing fecal pH (Stowell, 2009), increasing fecal short chain fatty acid (SCFA) concentrations and the amount of beneficial bacteria (e.g., *Lactobacillus* and *Bifidobacterium*) (Probert, Apajalahti, Rautonen, Stowell, & Gibson, 2004; Zhong et al., 2000). Polydextrose also has a very low glycemic index (4–7) compared to the reference glucose (100) (Foster-Powell, Holt, & Brand-Miller, 2002; Stowell, 2009) and can decrease LDL cholesterol and total cholesterol values in human blood (Liu & Tsai, 1995).

Polydextrose was initially produced by vacuum-melt condensation of glucose with sorbitol and citric acid as catalyst (Allingham, 1982; Rennhard, 1973). It is however, still rely on the indirect heating methods which generally result in underexposed or over-exposed material in the same batch. Furthermore, the conventional systems are very bulky and not easy to operate and the methods rely on inefficient batch types of production that need long reaction time resulting in low production efficiency. Therefore, a simple, quick and continuous synthesis manner is desirable.

In the past decades, Microwave technology has become increasingly popular within the organic synthesis and academic arenas (Hayes, 2004; Lidstrom, Tierney, Wathey, & Westman, 2001; Surati, Jauhari, & Desai, 2012). Microwave heating generates efficient internal heat-transfer by penetrating subjects and causing uniform energy distribution throughout the material irradiated, which leads to an even chemical reaction. This is an advantage of microwave irradiation not achieved by indirect heating methods. We previously developed a rapid and highly efficient method to prepare carbohydrate oligomers by microwave irradiation (Li, Le, & Shi, 2014).

* Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China. Tel.: +86 510 85917789; fax: +86 510 85917789.

E-mail addresses: lgw@jiangnan.edu.cn, hswang201166@gmail.com (G. Le).

http://dx.doi.org/10.1016/j.carbpol.2014.07.012

0144-8617/© 2014 Elsevier Ltd. All rights reserved.
based on the fact that sugars can be polymerized when heated in the presence of acids. According to IUPAC definition of oligosaccharides (DP < 9), polydextrose is a polysaccharide (Cui, 2005), and if the degree of polymerization (DP) is successfully controlled, polydextrose could be produced using this method.

The aim of the present work is to study the feasibility of a rapid and efficient synthesis of polydextrose by microwave irradiation, analyze the structural features of synthesis products, and further demonstrate its similarity to Polydextrose-Litesse® through the FT-IR spectra and biological function.

2. Materials and methods

2.1. Materials and apparatus

All chemicals and solvents were of analytical reagent grade. Deionized and ultrapure water were used. Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), D-Glucose (AR class), Sorbitol (AR class) and Phosphoric acid (AR class) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China); The Polydextrose-Litesse® Ultra Powder was provided by Danisco Co., Ltd. (Shanghai, China).

Beijing Xianghu Science and Technology Development Co., Ltd. (Beijing, China) designed the microwave reactor, the equipment parameters are listed as follows: power range: 0–1000 W at 2.45 MHz; temperature range: 0–300 °C; temperature measurement accuracy: ±0.2 °C; temperature control accuracy ±1 °C; reaction volume: 50–1500 mL; Agitation: magnetic stirrer or mechanical agitation. High performance liquid chromatogram (HPLC) was performed on Agilent Apparatus (Agilent 1260) equipped with differential refractive index detector (Shodex RI-101) (Agilent Co., USA), ICS-5000 ion chromatography (Dionex Co., USA). The FTIR spectra of samples as KBr pellets were taken using a Nicolet 560 spectrometer (Nicolet Co., USA).

2.2. Preparation of polydextrose

Synthetic reaction was performed by microwave reactor with an automatic controller to regulate microwave output power, reaction temperature, and agitation. Glucose and sorbitol (8.9:1, v/w) were mixed, followed by the addition of 10% (v/w) water and 1.2% (v/w) phosphoric acid with sufficient mixing. Then the mixture was taken to the entrance of the microwave reactor and subjected to microwave irradiation at 120 °C for 2 min. When reaction was complete, the mixture was cooled by dry air at the export of the reactor and crush-up to obtain the crude product.

2.3. Purification of polydextrose

The crude product was eluted with ethanol (85%, v/v) to obtain glucose, sorbitol and phosphoric acid free product. The deposition was re-dissolved in deionized water, further concentrated at temperature of 60 °C under the vacuum of 0.1 MPa, and then lyophilized to obtain white powder. Ethanol precipitated product was dissolved in ultrapure water and eluted with deionized water (pH 7.0) by gel permeation chromatography of Sephadex G-15 gel column at room temperature. The flow rate of eluent was 0.5 mL/min. About 3 mL of eluent was automatically collected in a tube at 6 min interval using an automated step-by-step fraction collector. The collected fractions were detected at 490 nm by the phenol-sulphuric acid colorimetric method. Eluted curve was pro- tracted by tube number and absorbance. The main fractions were collected and lyophilized. Then the collection was further applied on a gel permeation chromatography column of Sephadex G-25, and eluted with double distilled water at flow rate of 0.5 mL/min. The elution was collected and lyophilized as purified polydextrose for further analysis.

2.4. Analytical methods

Molecular weight of polydextrose was determined by high-performance gel-permeation chromatography (HGPCC) on a Waters 600 HPLC apparatus equipped with 2410 differential refractive index (RI) detector and Empower workstation. The analytical column was Ultrahydrogel® Linear 300 mm × 7.8 mmid × 2. The mobile phase was NaNO2 (0.1 mol/L) solution containing NaNO3 (0.5 g/L) with 0.9 mL/min flow rate. The sample, previously filtered through a membrane (0.22 μm, Millipore), was injected at a concentration of 1 mg/mL. The column oven was kept at 45 °C. The results were processed with Agilent Chemstation GPC Data Analysis software (REV. A.02.01).

Composition analyses of polydextrose are typically based on hydrolysis procedures using trifluoroacetic acid (TFA) at elevated temperature according to the method of Wang, Liu, Zhou, & Hu, 2012. Removing TFA hydrolysis sample was detected by high-performance anion-exchange chromatography (HPAEC) with Dionex CarboPac PA 20 anion exchange column including analytical column and guard column. Mobile phase A was water and B was 0.25 mol/L NaOH with 0.5 mL/min flow rate. The sample was detected with pulsed amperometric detector (PAD) using standard quadrupole potential waveform for carbohydrates analysis. The column oven was 30 °C and the injection volume was 20 μL. The Fourier transform infrared (FT-IR) spectra of polydextrose were recorded at the absorbance mode from 4000 cm⁻¹ to 400 cm⁻¹ on a Nicolet Nexus FT-IR spectrometer.

2.5. In vitro fermentation of polydextrose

Before the fermentation experiments, 100 mg (DM basis) of polydextrose substrate was weight in triplicate into 16 mL Balch tubes. Bourquin, Titqemeyer, and Fahey (1993) have previously described the composition of the in vitro medium with the exclusion of the SCFA mix. The sterilization culture medium (10 mL) was aseptically transferred into Balch tubes, capped with butyl rubber stoppers, and sealed with polytetrafluoroethylene caps. The tubes were kept at 4 °C for approximately 2 h to dissolve the substrates before initiating fermentations. The inocula were prepared by the method by Sarbini, Kolida, Gibson, and Rastall (2012). Before inoculation, the tubes were pre-warmed in a 37 °C water bath for 30 min, and then each vessel was inoculated with 1 mL of fresh fecal slurry. The batch cultures were incubated at 37 °C for 24 h. At the end of incubation, the tubes were removed from the 37 °C incubator and processed immediately for pH, gas production, and SCFA production measurements. Gas production was determined by fluid displacement (water with 5% HCl and resazurin) at equal pressure using a manometer (Campbell & Fahey, 1997). The pH was measured using a standard pH meter. A 5 mL subsample was taken from each tube for SCFA and lactate analysis. SCFA and lactate detection was based on the method of Li et al. (2012).

3. Results

3.1. Preparation of polydextrose

Polydextrose was synthesized using glucose to sorbitol on a ratio of 8.9:1 as reactants, phosphoric acid as catalyst and water as initiator via an improved route assisted by microwave irradiation. Schematic of polydextrose synthesis is shown in Fig. 1. The effects of reaction temperature, reaction time, the quantity of added catalyst and initiator on the yield of polydextrose are listed as follows.
Temperature plays pivotal roles in polydextrose synthesis rate and yield ratio. In this study, the optimum temperature for polydextrose synthesis was shown to be 120 °C (Fig. 2A), under the condition of constant microwave power output of 999 W, reaction time 2 min, 10% initiator and 1.2% catalyst.

Reaction time is one of the important factors for efficient synthesis. Therefore, time course studies on polydextrose synthesis were performed for 3.5 min (Fig. 2B) with temperature 120 °C, 10% initiator and 1.2% catalyst. The maximum polydextrose yield rate was obtained after 2 min of microwave irradiation.

As water can effectively absorb microwave energy, it was used as initiator in this study. As shown in Fig. 2C, the polydextrose yield and rate improved with the increasing amounts of the initiator until they reached the peak value at approximately 10% initiator addition, the other optimal conditions were identified as: reaction temperature 120 °C, reaction time 2 min and 1.2% catalyst.

Phosphoric acid was used as catalyst to accelerate the polymerization of glucose, the maximum polydextrose yield rate was 90% (Fig. 2D), when add 1.2% catalyst and 10% initiator in reaction system with microwave irradiation 2 min under the temperature of 120 °C.

3.2. Isolation and purification of polydextrose

Residual glucose, sorbitol and phosphoric acid were removed by elution with ethanol. The precipitate was analyzed by HPLC as shown in Fig. 3(A). Main constituents of the product could be detected and measured in turn in graph (b) as follow: glucose 1.00%, gluco-oligosaccharides and polydextrose 99%. Comparing with the HPLC of standard glucose (a), ethanol elution could obtain monosaccharide and di-saccharide free polydextrose (c), the coefficient of recovery was 93.74%. Then ethanol precipitated polydextrose was separated on a Sephadex G-15 column, as shown in Fig. 3(B-a), two fractions were obtained: peak I (the large molecular weight), peak II (the small molecular weight). Peak I was selected and the elution was lyophilized for further analysis. The collected polydextrose in Peak I was further isolated on a Sephadex G-25 column and a single symmetrical peak was obtained as shown in Fig. 3(B-b), indicating that the collected polydextrose in Peak I was homogeneous.

3.3. Monosaccharide identification and molecular weight analyses of polydextrose

The ethanol-precipitated polydextrose was hydrolyzed using 2 mol/L TFA for 4.5 h, and then the hydrolysate was detected by HPAEC. As shown in Fig. 4(A), the retention time presented in graph (a) of standard galactose, glucose and mannose were 7.617, 8.784 and 10.734 min, respectively. As compared with graph (a), we found out that the composition of ethanol precipitated polydextrose was glucose (b). This result was in agreement with IR spectrum observation, that the characteristic absorption at 767.3 cm⁻¹ in the IR spectra was glucose (Fig. 5).

Purified polydextrose was also eluted as a single symmetrical sharp peak on high-performance gel-permeation chromatography (HPGPC)Fig. 4(B) indicates that purified polydextrose was homogeneous, consistent with chromatography of Sephadex G-25 column analyses. The weight average molecular weight (M₉) was calculated to be 2.131 kDa, the number average molecular weight (Mₙ) was 1.647 kDa, and the molecular weight distribution coefficient...
(Mₚ/M₀) was 1.29. The average degree of polymerization (DP) was about 13, which was consistent with Craig’s (2001) research.

3.4. FT-IR spectra analysis of polydextrose

The FT-IR spectrum of Polydextrose-Litesse® and polydextrose synthesized by microwave irradiation was presented in Fig. 5. The attributions of the main absorptions were characteristic of glycosidic structures and were related to C–O stretching (1408.3 cm⁻¹) and anomeric C–H group vibration (849.6 cm⁻¹ and 919.3 cm⁻¹). Moreover, the characteristic absorptions at 849.6 cm⁻¹ and 919.3 cm⁻¹ in the IR spectra indicated that α- and β-configurations were correlated (Li, Fan, & Ding, 2011). The absorption bands at 767.3 cm⁻¹ was ascribed to the characteristic absorption of glucose. The absorption bands at 578 cm⁻¹ and 923 cm⁻¹ contribute to α-(1,4) Glc (MíčkoVá, CopíKoVá, & SyNyťSyA, 2007). The region at 1000–1200 cm⁻¹ was due to C–O–C stretching vibration (Vieira et al., 2013). While the marker bands at 1150 cm⁻¹, 1074 cm⁻¹ and 1025 cm⁻¹ were found to be characteristic absorption of polydextrose. The small peaks at 1631.6 cm⁻¹ and 1408.3 cm⁻¹ resulted from –C–O stretching and –C–O stretching, respectively (Feng, Li, & Wang, 2010). Further analysis of the FT-IR spectra revealed that the broader band of absorption between 3700 cm⁻¹ and 3000 cm⁻¹ was due to O–H stretching. The absorption at 3424.8 cm⁻¹ is attributed to the hydroxyl (–OH) stretching vibration and the band at 2925.0 cm⁻¹ is due to C–H stretching vibration (Liu et al., 2007). These results indicated that the polymer synthesized in this study was polydextrose, which was similar to the Polydextrose-Litesse® in structural feature.

3.5. In vitro fermentation of polydextrose

The substrate fermentation by fecal microbiota resulted in short chain fatty acid (SCFA), lactate, gas production and pH decrease (Table 1). The amount of fermentation products and the pH decrease of polydextrose-synthesis and Polydextrose-Litesse® were significantly (P < 0.05) higher than polydextrose-free. Acetate was the major SCFA product from the substrate fermentations at 24 h, followed by butyrate and propionate. Acetate production of Polydextrose-Litesse® fermentation was greater but was not significantly different from Polydextrose-synthesis at 24 h. The amount of propionate and butyrate production was the same for the two polydextrose substrates at the end of fermentation. Lactate production fermented by Polydextrose-synthesis was slightly lower than Polydextrose-Litesse®. The production of fatty acid may cause pH decrease. Before fermentation, the pH value among substrates are the same (6.80 ± 0.01); however, after 24 h fermentation by inocula from fecal suspension it decreased by 34.23 ± 3.78% and 33.54 ± 4.17% (mean ± SEM), respectively. The Polydextrose-Litesse® resulted in a greater decrease in pH compared with polydextrose-synthesis. Gas production from the two substrates
Table 1

SCFA, Lactate, pH and gas production after 24 h in vitro fermentation of polydextrose with fecal microbiota. * Means in the same row with different superscripts are significantly different (P<0.05). The data were presented as mean ± S.D. of three parallel measures. 4 The culture medium without adding polydextrose; 5 The culture medium added with polydextrose-Litesse®; 6 The culture medium added with polydextrose synthesized by microwave irradiation.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Acetate</th>
<th>Propionate</th>
<th>Butyrate</th>
<th>Lactate</th>
<th>pH decrease</th>
<th>Gas production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol/g</td>
<td>Substrate DM</td>
<td></td>
<td></td>
<td>%</td>
<td>ml/g substrate DM</td>
</tr>
<tr>
<td>Polydextrose-free*</td>
<td>0.07 ± 0.01</td>
<td>0.00 ± 0.00</td>
<td>0.02 ± 0.00</td>
<td>0.11 ± 0.01</td>
<td>4.5 ± 0.47</td>
<td>16.48 ± 2.39</td>
</tr>
<tr>
<td>Polydextrose -Litesse®</td>
<td>0.43 ± 0.03*</td>
<td>0.05 ± 0.00*</td>
<td>0.14 ± 0.01*</td>
<td>3.65 ± 0.39*</td>
<td>34.23 ± 3.78*</td>
<td>56.67 ± 7.93*</td>
</tr>
<tr>
<td>Polydextrose-synthesis®</td>
<td>0.40 ± 0.04*</td>
<td>0.05 ± 0.00*</td>
<td>0.14 ± 0.01*</td>
<td>3.53 ± 0.45*</td>
<td>33.54 ± 4.17*</td>
<td>59.33 ± 7.71*</td>
</tr>
</tbody>
</table>

was similar at 24 h fermentation, but polydextrose-synthesis produced slightly more gas than the Polydextrose-Litesse®. These results showed that polydextrose synthesized by microwave irradiation possess the biological function similar to Polydextrose-Litesse®.

4. Discussion

Polydextrose is a randomly bonded α-glucose polymer with a molecular formula of \((\text{C}_{6}\text{H}_{10}\text{O}_{5})_n\) (n = 2, 3, ...) (Fig. 6B). The average degree of polymerization (DP) was reported to be about 12 (Craig, 2001).

Studies have shown that sugars can polymerize in the presence of heat and acid (Allingham, 1982; Baker, 1993; Manley-Harris & Richards, 1993; Li et al., 2006). The possible reactions are shown in Fig. 6A. It is an endothermic reaction and energy input plays a pivotal role in chemical rate. Under the experimental conditions employed in this study, microwave irradiation was used to provide energy for polydextrose synthesis. When the microwave penetrates the material, the energy of microwave was absorbed by polar molecules and translated into heat energy. In the polydextrose synthesis reaction system, the substrate (glucose) was in solid state, and cannot effectively absorb microwaves (Li et al., 2006). Although the catalyst (phosphoric acid) was polar, its quantity was minute. So the reaction requires some initiators to improve reactants’ absorbency. Water was the optimal solvent since it is also a polar solvent. Furthermore, water is one of the intermediate products (Fig. 6A) that easily absorb microwaves to facilitate the reaction. Phosphoric acid was used as the polar catalyst for the glucose reaction.

![Fig. 6. possible reactions (A) and representative structure of polydextrose (B)](image-url)

The figure shows the possible reactions (A) and the representative structure of polydextrose (B) (the R group = H, sorbitol or more polydextrose).
polymerization. In addition to its strong polarity, phosphoric acid can also absorb microwave energy together with water and further improved the reaction temperature, which causes interchanging of the reactant state between solid and liquid. At this state, all the polar molecules rapidly change directions, which enhance the collision frequency between the molecules. Moreover, the addition of phosphoric acid accelerated the polymerization of glucose and consequently, the synthesis reaction rate was greatly improved. In this research, using protonated glucose as glycosyl donor and non-protonated glucose as glycosyl acceptor demonstrated that the use of microwave irradiation in synthesizing polydextrose has the ability to provide a general solution for the rapid and efficient construction of glycoside linkages among glucose molecules.

Recently developed microwave-assisted polydextrose synthesis method made it possible to control the degree of polymerization (DP) of polydextrose. It addressed the problem of which polydextrose synthesized by other strategies exist at a wide range of molecular weight (162–18,000 g/mol) (Allingham, 1982). In our research, the average molecular weight (M_w) was 2.131 kDa and the average DP was 13 (Fig. 4B) while the molecular weight distribution coefficient (M_w/M_n) was 1.29 indicating a narrowed molecular weight range. Additionally, the DP of most of the polydextrose molecules is around 13, which could attributed to the even heating of microwave irradiation.

The infrared (IR) spectrum of polydextrose synthesized by microwave irradiation is very similar to Polydextrose-Litesse® as shown in Fig. 5. From the results of in vitro fermentation by human fecal flora (Table 1), both of them have similar biological function in fermentation pH profile, short-chain fatty acids (SCFA), lactate, and gas production.

5. Conclusions

In this study, synthesis of polydextrose was made possible with the use of microwave irradiation as a principal energy source, additionally the synthesized product was fully characterized. Its structure and functions were similar to Polydextrose-Litesse® when tested by FT-IR spectrum and in vitro fermentation experiment. These results suggest a fast and efficient synthesis of polydextrose by microwave irradiation was feasible. Therefore, our microwave irradiation mediated acid catalysis can be used to synthesize a variety of other value added carbohydrate polymers.

Acknowledgments

The authors are grateful for the financial support from the 12th Five-Year Plan for Science and Technology Development of China (No. 2012BAD33B05), National Nature Science Foundation (No. 31201805) and Natural Science Foundation of Jiangsu Province (No. BK20140147) for this work. The authors also want to thank Dr. Chenfeng Lu for proofreading the manuscript.

References

