Ultrathin cobalt phosphate (CoHPO$_4$·3H$_2$O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO$_4$·3H$_2$O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g$^{-1}$, and no obvious decay even after 3000 charge–discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.

1 Introduction

In the past few years, tremendous attention has been paid to graphene, the thinnest two-dimensional (2D) crystal with exceptional electronic, optical and mechanical properties.\(^1,2\) These outstanding properties of graphene, due to its atomic-layer thickness and 2D morphology, have encouraged the exploration of other kinds of 2D nanomaterials, derived from layered bulk crystals analogous to graphite.\(^3–5\) After the discovery of the exotic properties of graphene, 2D layered materials, such as metal chalcogenides, transition metal oxides, and other 2D compounds, have gained renewed interest.\(^6–12\) These materials span the wide range of electronic structures, from insulator to metal, and display interesting properties. These include the topological insulator effect,\(^19,20\) superconductivity,\(^21\) and thermoelectricity.\(^22\) Furthermore, a strong interest in group-IV graphene-like 2D buckled nanosheets has recently emerged, namely silicene and germanene.\(^23–25\)

As a result of their distinct properties and high specific surface areas, these 2D materials occupy an important place in various applications, such as optoelectronics, spintronics, catalysts, chemical and biological sensors, supercapacitors, solar cells, and lithium ion batteries.\(^26–42\) Prof. Xie et al. have successfully reported highly conductive VS$_2$ ultrathin films with a high specific capacitance, showing promising signs for this new 2D material to be utilized in energy storage devices.\(^43\)

Metal phosphates exhibit broad and potential applications in many fields.\(^44–47\) A preparation process has been used to synthesize an array of transition metal phosphate amorphous colloidal spheres by Li et al.\(^44\) Metal phosphates, especially for layered metal phosphates and phosphonates, have been studied in the years 1987–1990.\(^48,49\) Recently, cobalt phosphate as a kind of a transition metal phosphate has been used as a promising positive electrode for rechargeable ion batteries, heterogeneous catalysts, sorbents, ion exchangers, and magnetism materials due to the layers of connected CoO$_x$ and PO$_4$ polyhedra, the structures of known zeolite types, and the outstanding electronic or magnetic property.\(^50–55\) However, there are nearly no reports on synthesis and application of cobalt phosphate ultrathin nanosheets.

Herein, we report that a kind of ultrathin cobalt phosphate (CoHPO$_4$·3H$_2$O) nanosheets has been successfully synthesized by a one pot hydrothermal method without any exfoliating. More importantly, novel CoHPO$_4$·3H$_2$O ultrathin nanosheets were successfully assembled for constructing the electrodes of supercapacitors. As expected, a specific capacitance of 413 F g$^{-1}$ was realized here, no obvious degradation of which was observed even after 3000 charge–discharge cycles, offering a new kind of electrode materials for supercapacitors with high performance based on quasi-two-dimensional materials.

2 Results and discussion

Fig. 1 shows XRD patterns of as-prepared samples. All peaks of the patterns are indexed to be in agreement with CoHPO$_4$·3H$_2$O (JCPDS no. 39-0702). No peaks of other phosphites or phosphates were detected from these patterns. The peaks are narrow, which indicates the good crystallinity of the as-prepared samples. Good crystallinity of CoHPO$_4$·3H$_2$O might be
good to improve the cycle life of electrodes for its stable structure, and it is not easy to be destroyed during the electrochemical process. In Fig. 1B, the schematic crystal structures of CoHPO$_4$·3H$_2$O super cells (2 × 2 × 2 slabs) are projected based on data of Inorganic Crystal Structure Data (ICSD)-86668. CoHPO$_4$·3H$_2$O has the layered crystal structure and such a layered crystal structure might offer many nanochannels and improve diffusion of ions and the electrolyte.

The morphology of as-prepared CoHPO$_4$·3H$_2$O was examined by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). A typical low-magnification SEM image in Fig. 2a shows that the morphology of samples is ultrathin nanosheet in the 2D microscale. The thickness of an ultrathin nanosheet is measured by AFM shown in Fig. 2b. From AFM results, the thickness of the ultrathin nanosheet is ~2.7 nm. And the width of the ultrathin nanosheet is more than 6.0 μm. In addition, there are nearly no pores seen from the HRTEM image in the inset of Fig. 2c. From the HRTEM image of the edge of a nanosheet (Fig. 2d), the ultrathin nanosheet thickness of ~2.7 nm is also directly determined, and is consistent with the AFM measurement in Fig. 2b. The measured distance of neighboring lattice fringes in Fig. 2d is ~0.537 nm, corresponding well to the (002) lattice spacing of CoHPO$_4$·3H$_2$O. It denotes that the CoHPO$_4$·3H$_2$O ultrathin nanosheet is comprised of 4–5 single layers. The selected area electron diffraction (SAED) pattern is shown in the inset of Fig. 2d, which demonstrates the good crystalline nature of the product and may be described as a single crystal with [001] growth direction. A schematic illustration of the layered stacking of the synthetic CoHPO$_4$·3H$_2$O ultrathin nanosheets is shown in Scheme 1; it clearly exhibits a few layered CoHPO$_4$·3H$_2$O ultrathin nanosheet model image.

We also explored the possible formation process of CoHPO$_4$·3H$_2$O ultrathin nanosheets, and found that the reaction time affected the morphology of the product. The product was synthesized under different hydrothermal conditions (seen in ESI Fig. 1†). As can be seen in ESI Fig. 1a,† quantum dots were obtained under hydrothermal conditions for 2 days. After being
hydrothermal conditions for 4 days, nanonetworks were obtained as shown in ESI Fig. 1b.† And after 6 days under hydrothermal conditions, CoHPO₄·3H₂O ultrathin nanosheets were successfully synthesized as shown in ESI Fig. 1c.† When further maintained for 8 days, these CoHPO₄·3H₂O ultrathin nanosheets assembled again and formed a larger one as shown in ESI Fig. 1d.† ESI Fig. 2† shows that a phase evolution occurred during this process. The product obtained after 2 hours is an amorphous material. On prolonging the reaction to 4 hours, the phase of CoHPO₄·3H₂O is found and some amorphous materials existed. And we find that EG plays a key role in the formation of the layered structures. The crystallization and reconstruction of CoHPO₄·3H₂O are effected by EG molecules.⁵⁰,⁵¹ In a previous work, Co₁₁(HPO₃)₈(OH)₆ microarchitectures (seen in ESI Fig. 3†) were obtained by using 20 mL deionized water instead of EG.

To gain further insight into the specific surface area of CoHPO₄·3H₂O ultrathin nanosheets, Brunauer–Emmett–Teller (BET) measurements were performed. And the N₂ adsorption–desorption isotherms of CoHPO₄·3H₂O ultrathin nanosheets are shown in Fig. 3. The BET surface area of CoHPO₄·3H₂O ultrathin nanosheets is 267 m² g⁻¹. The pore-size distribution (in the inset of Fig. 3) was determined by using the Barrett–Joyner–Halenda (BJH) method from the desorption branch of the isotherm. The average pore diameter of the sample is 2–6 nm, which is attributed to the layered structures assembled or folded. As widely reported, a high surface area and layered ultrathin nanosheets usually offer many nanochannels for contacting the electrolyte with surface-interfaces of novel micro/nanostructures.⁴³

Cyclic voltammogram (CV) studies were employed to characterize the capacitive performances of CoHPO₄·3H₂O ultrathin nanosheets. (Fig. 4) Cyclic voltammetry experiments within a 0.0–0.50 V range at a scan rate of 5–100 mV s⁻¹ were performed on the layered CoHPO₄·3H₂O ultrathin nanosheet electrodes in 3.0 M KOH electrolytes at room temperature. The galvanostatic charge–discharge curves of CoHPO₄·3H₂O ultrathin nanosheet electrodes at current densities of 1.5–15.0 A g⁻¹ in 3.0 M KOH electrolytes and the specific capacitance of CoHPO₄·3H₂O ultrathin nanosheet electrodes derived from the discharging curves at the current density of 1.5–15.0 A g⁻¹ in 3.0 M KOH electrolytes. A plot of the estimated specific energy and specific power at various charge–discharge rates in 3.0 M KOH electrolytes, and charge–discharge cycling test at the current density of 1.5 A g⁻¹ in 3.0 M KOH electrolytes.

Fig. 4 (a) Cyclic voltammetry experiments within a 0.0–0.50 V range at a scan rate of 5–100 mV s⁻¹ were performed on the layered CoHPO₄·3H₂O ultrathin nanosheet electrodes in 3.0 M KOH electrolytes at room temperature. (b) the galvanostatic charge–discharge curves of CoHPO₄·3H₂O ultrathin nanosheet electrodes at current densities of 1.5–15.0 A g⁻¹ in 3.0 M KOH electrolytes. (c) specific capacitances of CoHPO₄·3H₂O ultrathin nanosheet electrodes derived from the discharging curves at the current density of 1.5–15.0 A g⁻¹ in 3.0 M KOH electrolytes, (d) a plot of the estimated specific energy and specific power at various charge–discharge rates in 3.0 M KOH electrolytes, and (e) charge–discharge cycling test at the current density of 1.5 A g⁻¹ in 3.0 M KOH electrolytes.
nanosheet electrodes. Fig. 4a shows the CVs of CoHPO₄·3H₂O ultrathin nanosheet electrodes (a mass loading of ~5 mg) in a 3.0 M KOH electrolyte at different scan rates in the range 5–100 mV s⁻¹. As seen in Fig. 4a, the shapes are different from that of electric double-layer capacitance, suggesting that the capacity mainly results from pseudocapacitive capacitance, and it is clear that the Faradaic pseudocapacitive property of CoHPO₄·3H₂O ultrathin nanosheets is based on the surface redox mechanism of Co³⁺ to Co⁴⁺ at the surface. The CV curves of the compound in a relatively broad voltage window of 0.0–1.0 V are shown in ESI Fig. 4f. It is seen that electrochemical behavior nearly disappears from 0.5 to 1.0 V.

Chronopotentiometry (CP) curves at different current densities are shown in Fig. 4b. The symmetrical characteristic of charging–discharging curves is good, which means that the CoHPO₄·3H₂O ultrathin nanosheet electrodes with excellent electrochemical capability and redox process are reversible. The relationships between the specific capacitances calculated by CP curves and current densities are given in Fig. 4c. Based on the CP curves, CoHPO₄·3H₂O ultrathin nanosheet electrodes have a large specific capacitance and reach up to 413 F g⁻¹ at a current density of 1.5 A g⁻¹, and remain at 338 F g⁻¹ even at 15.0 A g⁻¹. The specific capacitance of CoHPO₄·3H₂O ultrathin nanosheets is better than some cobalt based phosphate micro/nanomaterials, such as our previous results – NH₄CoPO₄·H₂O microflowers (<340 F g⁻¹ at 1.5 A g⁻¹),⁵² cobalt phosphite (CoO(HPO₃)(OH)₆) microarchitectures (<312 F g⁻¹ at 1.5 A g⁻¹),⁵³ and cobalt pyrophosphate nano/microstructures (367 F g⁻¹ at 0.625 A g⁻¹)⁵⁴ – but lower than other supercapacitor materials.⁵⁵-⁵⁹

Specific energy and specific power are the two key factors for evaluating the power applications of electrochemical supercapacitors. A good electrochemical supercapacitor is expected to provide both high energy density and specific capacitance. Fig. 4d shows the plot for CoHPO₄·3H₂O ultrathin nanosheet electrodes in a 3.0 M KOH aqueous solution. CoHPO₄·3H₂O ultrathin nanosheet electrodes also have good specific energy and specific power. The specific energy of CoHPO₄·3H₂O ultrathin nanosheet electrodes decreases from 10.6 to 8.7 Wh kg⁻¹, while the specific power increases from 322 to 3225 W kg⁻¹ as the galvanostatic charge–discharge current density increases from 1.5 to 15.0 A g⁻¹.

It is very important for electrode materials to have good specific capacitance retention. Supercapacitors should work steadily and safely, which requires the specific capacitance of electrode materials to change as little as possible. The relationships of the specific capacitance with cycling number of CoHPO₄·3H₂O ultrathin nanosheet electrodes are shown in Fig. 4e. It shows excellent specific capacitance retention under 1.5 A g⁻¹. After 300 continuous charge–discharge cycles, CoHPO₄·3H₂O ultrathin nanosheet electrodes almost retain the same specific capacitance as its initial value. More importantly, CoHPO₄·3H₂O ultrathin nanosheet electrodes still retain more than 85.1% of their specific capacitance after 3000 continuous charge–discharge cycles.

We proposed two possible mechanisms for the charge–discharge behavior:

\[
\text{CoHPO}_4 \cdot 3\text{H}_2\text{O} + \text{OH}^- + e^- = \text{CoPO}_4 + 4\text{H}_2\text{O}; \quad (a)
\]

\[
\text{CoHPO}_4 \cdot 3\text{H}_2\text{O} + \text{K}^+ + e^- = \text{KCoHPO}_4 + 3\text{H}_2\text{O}. \quad (b)
\]

To identify the exact electrical conductivity of electrodes, we have measured the EIS spectrum of CoHPO₄·3H₂O ultrathin nanosheet electrodes at room temperature in the frequency range 0.01 to 10⁵ Hz at 0.40 V. Fig. 5 shows the EIS of CoHPO₄·3H₂O ultrathin nanosheet electrodes at room temperature and its calculated curve by ZSimpWin software. An equivalent circuit used to fit the impedance curve is given in the inset of Fig. 5a, which is similar to the circuit employed for the working electrode of a supercapacitor. The EIS data can be fitted by a bulk solution resistance Rₑ, a charge-transfer Rₜₜ, and a pseudocapacitive element Cₚ from the redox process of electrode materials, and a CPE to account for the double-layer capacitance. The charge-transfer resistance values Rₜₜ of all the samples were calculated by ZSimpWin software. And from the calculated results, we found that the Rₜₜ of CoHPO₄·3H₂O ultrathin nanosheet electrodes is 8.9 Ω. This clearly demonstrates the reduced charge-transfer resistance of CoHPO₄·3H₂O ultrathin nanosheet electrodes. In addition, the charge-transfer resistance Rₑ, also called Faraday resistance, is a limiting factor for the specific power of the supercapacitor. It is the low Faraday resistance that results in the high specific power of layered
CoHPO$_4$·3H$_2$O ultrathin nanosheets. This layered structure surface–interface character might also decrease the polarization of the electrode, and thus increase the capacity. The phase angles for impedance plots of CoHPO$_4$·3H$_2$O ultrathin nanosheet electrodes and their calculated curve by ZSimpWin software are observed in Fig. 5b. These phase angles are nearly 50° in the low frequencies clearly, which means that the CoHPO$_4$·3H$_2$O ultralthin nanosheets allow ion or electrolyte transfer to occur quickly.

3 Conclusions

In this work, unique CoHPO$_4$·3H$_2$O ultrathin nanosheets have been successfully synthesized through a hydrothermal method. More importantly, CoHPO$_4$·3H$_2$O ultrathin nanosheets show a novel layered surface–interface condition, which plays a key role in ion intercalation/extraction into/out and electrolyte access. The measurement of electrochemical properties of CoHPO$_4$·3H$_2$O ultrathin nanosheets is important work, which successfully illustrates that CoHPO$_4$·3H$_2$O ultrathin nanosheets can be applied as an electroactive material for supercapacitors. Despite specific capacitance of CoHPO$_4$·3H$_2$O ultrathin nanosheets materials being not much larger than some previous materials, it is a good example to prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of morphology of nanomaterials will serve for controlling the performance. Exploring the electrochemical characteristics of novel nano/micromaterials might direct a new generation of supercapacitor materials.

4 Experimental section

4.1 Synthesis of CoHPO$_4$·3H$_2$O ultrathin nanosheets

In a typical synthesis, 0.28 g cobalt chloride and 0.30 g sodium pyrophosphate were mixed with 20 mL ethylene glycol. The above mixture was stirred for 1 hour at room temperature. The solution mixture was put in a Teflon-lined stainless steel autoclave and heated at 200.0 °C for 6 days. After the reaction, violet precipitates were obtained. The precipitates were thoroughly washed with distilled water and ethanol to remove ions possibly remaining in the final products, and dried at room temperature in air.

4.2 Electrochemical measurements

Electrochemical study on CoHPO$_4$·3H$_2$O ultrathin nanosheet electrodes was carried out on a CHI 660D electrochemical working station (Shanghai Chenhua Instrument, Inc.). All electrochemical performances were carried out in a conventional three-electrode system equipped with a platinum electrode and a saturated calomel electrode (SCE) as counter and reference electrodes, respectively. Before electrochemical measurement, we purged out O$_2$ from the solution with the inert gas Ar. The working electrode was made from mixing of active materials (CoHPO$_4$·3H$_2$O ultrathin nanosheets), acetylene black, and PTFE (polytetrafluoroethylene) with a weight ratio of 80:15:5, coating on a piece of foamed nickel foam of about 1 cm2, and pressing it to be a thin foil at a pressure of 5.0 MPa. The electrolyte was a 3.0 M KOH solution. Cyclic voltammetry and galvanostatic charge–discharge methods were used to investigate capacitive properties of CoHPO$_4$·3H$_2$O ultrathin nanosheet electrodes. And electrochemical impedance spectroscopy measurements of all the samples were conducted at 0.40 V in the frequency range of 100 kHz to 0.01 Hz with an AC voltage amplitude of 5 mV by using PARSTAT2273.

4.3 Characterizations

The morphology of as-prepared samples was observed by a JEOL JSM-6701F field-emission scanning electron microscope (FE-SEM) at an acceleration voltage of 5.0 kV. The phase analyses of the samples were performed by X-ray diffraction (XRD) on a Rigaku-Ultima III with Cu K$_\alpha$ radiation ($\lambda = 1.5418$ Å). Nitrogen adsorption–desorption measurements were performed on a Gemini VII 2390 Analyzer at 77 K using the volumetric method. The specific surface area was obtained from the N$_2$ adsorption–desorption isotherms and was calculated by the Brunauer–Emmett–Teller (BET) method. Transmission electron microscopy (TEM) images and HRTEM images were captured on the JEM-2100 instrument microscope at an acceleration voltage of 200 kV. The atomic force microscopy (AFM) image was measured at CSPM4000 (Benyuan, Beijing).

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC 21201010, 21003001 and 21071006), Science and Technology Foundation of Henan Province (122102210253, 13A150019), and China Postdoctoral Science Foundation (2012M521115).

Notes and references
