Carbon encapsulated ultrasmall SnO$_2$ nanoparticles anchoring on graphene/TiO$_2$ nanoscrolls for lithium storage

Xinlu Li *, Yonglai Zhang, Tongtao Li, Qineng Zhong, Hongyi Li, Jiamu Huang

School of Materials Science Engineering, Chongqing University, Chongqing 400030, PR China

Abstract

Amorphous carbon is coated on the surface of ultrasmall SnO$_2$ nanoparticles which are anchored on graphene/TiO$_2$ nanoscrolls via hydrothermal treatment, followed by annealing process. Transmission electron microscope images show that ultrasmall SnO$_2$ nanoparticles are anchored on graphene/TiO$_2$ nanoscrolls and further immobilized by the outermost amorphous carbon layer. The carbon encapsulated SnO$_2$@graphene/TiO$_2$ nanocomposites deliver high reversible capacities around 1131, 793, 621 and 476 mAh g$^{-1}$ at the current densities of 100, 250, 500, and 1000 mA g$^{-1}$, respectively. It is found that SnO$_2$ nanoparticles play a dominant role in the contributions of reversible capacity according to the cyclic voltammetry curves, voltage-capacity curves and dQ/dV vs. potential curves. The substrate of graphene/TiO$_2$ nanocomposites provides sufficient transport channels for lithium ions and high electron conductivity. While the outermost amorphous carbon layer prevents the peeling of SnO$_2$ nanoparticles from the substrate, therefore making them desirable alternative anode materials for lithium ion batteries.

* Corresponding author. Tel.: +86-23-65127940; Fax: +86-23-65127306. E-mail address: lixinlu@cqu.edu.cn (X. Li).

1. Introduction

Currently, lithium ion batteries (LIBs) have been considered as the most promising candidate for portable electronics and electrical/hybrid vehicles owing to their high energy density, long lifespan and environmental benignity.$^{[1,2]}$ TiO$_2$ has been widely studied as anode materials for LIBs due to their natural abundance, cost-effectiveness and excellent rate capability.$^{[3,4]}$ Furthermore, TiO$_2$ demonstrates quite small volume variation (3–4%) during lithium ions insertion/extraction,$^{[5]}$ leading to high structural stability and long cycle life. However, the drawbacks of poor electronic conductivity and low Li$^+$ diffusivity restrict its practical application for high-power LIBs.$^{[6]}$ A variety of approaches have been developed to surmount the tough issues, such as facet control,$^{[7]}$ surface coating$^{[8,9]}$ and nanorization$^{[10,11]}$. Graphene-based TiO$_2$ composite$^{[12–14]}$ have intrigued intensive interests of researchers, which are proved effective to improve the electronic conductivity and ion transport.

Tin dioxide (SnO$_2$) possesses high theoretical capacity but suffers from poor electrochemical performance$^{[15]}$ in terms of its dramatic volume expansion and shrinkage during alloying/dealloying (>300%),$^{[16]}$ which result in pulverization and severe destruction of the electrode.$^{[17]}$ Great efforts have been devoted to dealing with the conundrum. One of the most effective pathways is to fabricate yolk-shell SnO$_2$-based composites,$^{[18]}$ in which the voids can alleviate the volume change during lithiation and delithiation. Another approach is to synthesize hybrid nanostructures to immobilize SnO$_2$ with carbon-coating$^{[19,20]}$, which enhances the electronic conductivity, buffers the volume change and prevents the agglomeration of SnO$_2$ as well. Consequently, it is of great worth to combine high-capacity SnO$_2$ and structure-stable TiO$_2$ to design high-performance SnO$_2$@TiO$_2$ heterostructures which can tackle the pulverization and aggregation of SnO$_2$ nanocomposites.$^{[21–24]}$

In this paper, we report a facile strategy to synthesize carbon encapsulated SnO$_2$ nanoparticles anchoring on graphene/TiO$_2$ nanoscrolls via one-pot hydrothermal treatment and annealing process. The ultrasmall SnO$_2$ nanoparticles are anchored on the substrate of nanoscrolls and further immobilized by the outermost glucose-derived carbon layer, which prevent pulverization and peeling of SnO$_2$ nanoparticles from the substrate. The carbon
coated SnO$_2$@GNs/TiO$_2$ composites exhibit excellent cycling performance and high rate capability for high-power LIBs.

2. Experimental

2.1. Preparation of carbon capped SnO$_2$@graphene/TiO$_2$ and SnO$_2$@graphene composites

All the chemicals were used as received without further purification. Graphene oxide and anatase TiO$_2$ powder were mixed and transferred to a 100 mL autoclave, after hydrothermal treatment and ion-exchange, the resultant precursor was annealed to synthesize graphene/TiO$_2$ nanoscrolls (GNs/TiO$_2$) according to our previous report.[25] 0.5 g of GNs/TiO$_2$ nanoscrolls was dispersed in 70 mL of deionized water (DI) under ultrasonication for 3 h, then 0.31 g of SnCl$_4$·5H$_2$O was added and stirred for 1 h at ambient temperature. After 0.1 g of glucose was added to the above mixture and stirred for 6 h, the suspension was transferred to a 100 mL autoclave and hydrothermally treated at 200 °C for 24 h, followed by centrifugation and washing with DI. Then the resulted products were dried at 80 °C and annealed at 400 °C for 2 h in N$_2$ atmosphere to prepare carbon capped SnO$_2$@graphene/TiO$_2$ composites (SnO$_2$@GNs/TiO$_2$). SnO$_2$/graphene composites (SnO$_2$/GNs) were synthesized through the same synthesis process with SnCl$_4$·5H$_2$O and graphene oxide powder without carbon capsulation.

2.2. Materials Characterization

Field emission scanning electron microscopy (FESEM, ZEISS AURIGA FIB-SEM, Germany) and high-resolution transmission electron microscopy (HRTEM, LIBRA 200 FE, ZEISS, Germany) were performed to characterize the morphology and crystalline microstructure of the products. Nitrogen adsorption-desorption analysis was conducted on ASAP 2020 apparatus (Micromeritics Inc., USA). X-ray diffraction (XRD) patterns were recorded on DMAX-2500 PC X-ray spectrometer (Rigaku Corporation, Japan) with Cu Kα radiation (λ=1.5406Å). Fourier transform infrared (FTIR) spectrometry was carried out on Nicolet 5DXC (Thermo Nicolet, USA). Thermogravimetry (TG) curves were monitored on a thermal instrument (Netzsch STA 449 C, Germany).

2.3. Electrochemical Measurements

Electrochemical tests were performed using two-electrode CR2430 coin-type cells at ambient temperature. The working electrodes were prepared by mixing the active materials, carbon black, and poly vinylidene fluoride (PVDF) in a weight ratio of 70:15:15 in N-methyl-2-pyrrolidone (NMP) and pasting the mixture on a pure copper foil. A lithium foil was used as the counter electrode and a microporous polypropylene film (Celgard 2500) was used as the separator. The electrolyte used was 1 M LiPF$_6$ in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1, v/v). The coin cells were assembled in a high-purity argon-filled glove box (Super 1220/750, Mikrouna, China). Cyclic voltammetry (CV) tests were implemented on an electrochemical workstation (Solartron 1287/1260 8w, USA). Galvanostatic charge/discharge tests were conducted on a battery test system (Arbin BT 2000, USA) in a voltage range of 0.01~3.00 V at different current densities.

3. Results and discussion

The synthesis process of carbon encapsulated SnO$_2$@GNs/TiO$_2$ nanoscrolls is schematically illustrated in Fig. 1. Graphene nanosheets and TiO$_2$ nanoparticles are hydrothermally treated, followed by ion-exchange and heat treatment to prepare GNs/TiO$_2$ nanoscrolls.[25] Sn$^{4+}$ ions are attached on the substrate of GNs/TiO$_2$ nanoscrolls during stirring, and then they are accordingly immered in an aqueous glucose solution. After hydrothermal treatment, SnO$_2$ nanoparticles are in-situ anchored and encapsulated by pre-carbonized glucose. Finally the amorphous carbon capped SnO$_2$@GNs/TiO$_2$ composites are synthesized after annealing. The morphology and structure of SnO$_2$/GNs and SnO$_2$@GNs/TiO$_2$ composites were characterized by FESEM and TEM. As shown in Fig. 2(a) and (b), the size of SnO$_2$ nanoparticles in SnO$_2$/GNs composites ranges from 150~350 nm. SnO$_2$ nanoparticles are attached on the graphene nanosheets or percolated in the voids of graphene nanosheets. TEM images in Fig. 2(c) and (d) show that the GNs/TiO$_2$ nanoscrolls still remain hollow tubular structure even after SnO$_2$ nanoparticles anchoring with a diameter of 50~160 nm and length of several micrometers. It is worth mentioning that the SnO$_2$ nanoparticles are ultrasmall (4~8 nm), which are readily immobilized by a glucose-derived carbon layer (average thickness of ca. 3 nm) at the edge of SnO$_2$@GNs/TiO$_2$ composites in Fig. 2(e) and (f). Fig. 2(f) shows the HRTEM image of the square part in Fig. 2(e), the lattice fringes with d-spacings of 0.3397 and 0.3297 nm are ascribed to the (110) and (200) lattice planes of rutile-type SnO$_2$, respectively. The d-spacings of 0.3259 and 0.3267 nm are ascribed to the (110) lattice plane of rutile-type TiO$_2$ while the d-spacing of 0.2520 nm corresponds to the (101) lattice plane of TiO$_2$.

The crystallographic structure of SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs composites were investigated by XRD. As shown in Fig. 3(a), the main diffraction peaks at ~ 27.3°, 35.8°, 40.9°, 54.0°, 56.3° and 68.7° in the SnO$_2$@GNs/TiO$_2$ composites can be well indexed to rutile-type TiO$_2$ (JCPDS card no.21-1276).[26] The primary TiO$_2$ (B) phase transformed to rutile-type TiO$_2$ during hydrothermal treatment as shown in Fig. 3(a), considering the high thermal stability of TiO$_2$ whose major phase transformation to rutile occurs above 700 °C in air.[27] While the small “bumps” emerged at 2θ = 38.9° and 61.9° are assigned to SnO$_2$ phase in SnO$_2$@GNs/TiO$_2$. The diffraction peaks of SnO$_2$/GNs composites are well coincided with JCPDS card no.41-1445.[21] Notably, both the diffraction peaks around 2θ = 26° in SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs composites are quite strong, which are probably associated with the diffraction of graphene.

Nitrogen adsorption-desorption isothermal curves of the SnO$_2$@GNs/TiO$_2$ and SnO$_2$@GNs composites are displayed in Fig. 3(b). The SnO$_2$@GNs/TiO$_2$ present a typical type III curve with a H1 hysteresis loop,[21] indicating the presence of open-ended cylindrical pores in the composites, which are ascribed to the
nanoscrolled substrate of GNs/TiO₂. While the SnO₂/GNs composites exhibit a typical type III curve with a H₂ hysteresis loop, revealing abundant narrow pores between parallel plates of the graphene nanosheets in the SnO₂/GNs composites. The Brunauer-Emmett-Teller (BET) specific surface area and average pore volume of SnO₂@GNs/TiO₂ are 200 m² g⁻¹ and 0.62 cm³ g⁻¹, respectively, much higher than those of SnO₂/GNs composites (153 m² g⁻¹ and 0.41 cm³ g⁻¹, respectively). The monomodal pore size distribution of SnO₂@GNs/TiO₂ calculated by the Barrett-Joiner-Halenda (BJH) model is between 5–15 nm, which is obviously larger than the bimodal pore size distribution of SnO₂/GNs composites centered at 3–4 nm and 6–10 nm. The abundant pores in the SnO₂@GNs/TiO₂ provide sufficient accesses for the penetration and diffusion of lithium ions in the active materials.[28]

FTIR spectra of the as-prepared products were examined to distinguish the different chemical bonds in the composites. As shown in Fig. 3(c), the absorption peak at ~3440 cm⁻¹ associates with the stretching vibrations of hydroxyls of the –COOH groups, while the band at ~1630 cm⁻¹ corresponds to the O–H bending vibrations of water molecules.[29] The band at ~1115 cm⁻¹ relates to the C–C bonds of graphene and pyrolyzed carbon. The absorption peaks emerged at ~668 cm⁻¹ and ~542 cm⁻¹ in SnO₂@GNs/TiO₂ correspond to the stretching vibration modes of Ti–O–Ti bonds.[12] While the broad adsorption peaks at ~457 cm⁻¹ and ~620 cm⁻¹ are associated with the stretching vibration modes of O–Sn–O and Sn–O bonds,[21] respectively, confirming the existence of SnO₂ in SnO₂@GNs/TiO₂ composites.

Fig. 3(d) shows the TG curves of SnO₂@GNs/TiO₂ and SnO₂/GNs composites. The slight weight loss of 0.98wt% below 300°C is
ascribed to the removal of surface-adsorbed water owing to the large specific surface area of SnO2@GNs/TiO2 composites. The weight loss of 13.5wt% between 300~800 °C can be attributed to the combustion of carbon, including graphene and amorphous carbon in SnO2@GNs/TiO2 composites.[29] The weight loss of ~0.73wt% below 300°C in the SnO2@GNs composites is due to the removal of absorbing water, while about 1.04wt% of weight loss between 300~400 °C is associated with the decomposition of oxygen-containing functional groups in graphene oxides.[30] It can be calculated that the weight loss between 400~800 °C is 17.4wt%, owing to the combustion of graphene nanosheets, which is close to the initial addition of graphene nanosheets (20 wt%) in the synthesis process.

To understand the electrochemical behavior during lithiation and delithiation in SnO2@GNs/TiO2 composites, CV measurements were carried out at a scan rate of 0.02 mV s⁻¹ in the voltage range of 0.0~3.0 V. As presented in Fig. 4 (a), two well-defined cathodic peaks at ~1.07 V and ~0.16 V can be observed in the first cycle of SnO2@GNs composites. The peak at ~1.07 V corresponds to the conversion of SnO2 to Sn and Li2O upon lithiation (as shown in equation (1)), resulting in the formation of solid electrolyte interface (SEI). [31] While the peak appeared at ~0.16 V can be ascribed to the formation of alloy phases of Li₅Sn (equation (2)). [17,32] The small bumps at ~0.03 V are assigned to the subsequent lithium insertion into the graphene nanosheets. [33] In the anodic process, there are three oxidation peaks presented at ~0.5, 1.2, 1.8 V, respectively, associating with the extraction of lithium ions from Li₅Sn alloys, which are in accordance with previous reports. [20,28] It is known that the insertion/extraction of lithium ions in TiO2 mainly occurs in the voltage range of 1.5~2.1 V.[13] In the case of SnO2@GNs/TiO2 composites, the anodic peaks ranging from 1.5~2.0 V are obviously broadened, which are related to the delithiation in the rutile-type TiO2 by equation (3), as shown in Fig. 4 (b). [26] The anodic peaks are too broad to appear, demonstrating that the rutile-type TiO2 (theoretical specific capacity: 170 mAh g⁻¹) contributes much less capacity comparing with SnO2 in the SnO2@GNs/TiO2 composites.

SnO2 + 4Li⁺ + 4e⁻ → 2Li2O + Sn (1)
Sn + xLi⁺ + xe⁻ → LiₓSn (0 ≤ x ≤ 4.4) (2)
TiO2 + yLi⁺ + ye⁻ → LiₓTiO2 (0 ≤ y ≤ 0.5) (3)

The electrochemical performances of SnO2@GNs/TiO2 and SnO2@GNs were evaluated by galvanostatic charge/discharge cycling within a cut-off window of 0.01~3.00 V. As shown in Fig. 5 (a), the typical voltage vs. capacity curves at different current densities indicate that SnO2@GNs/TiO2 deliver an initial discharge capacity of 2470 mAh g⁻¹ and a charge capacity of 1131 mAh g⁻¹ at the current density of 100 mA g⁻¹ with a coulombic efficiency of 45.7%. Based on our work and previous reports,[19,34] it can be
deduced that the reaction of equation (1) would be reversible to some extent. According to the redox conversion of SnO$_2$ (equation (1)) and alloying mechanism of Li$_x$Sn (equation (2)), the maximum theoretical capacity of SnO$_2$ is calculated to be 1493 mAh g$^{-1}$,[34] which is higher than our results (1131 mAh g$^{-1}$). The carbon encapsulated SnO$_2$@GNs/TiO$_2$ composites possess high specific surface area (200 m2 g$^{-1}$), ultrasmall SnO$_2$ nanoparticles (4–8 nm) and abundant mesopores (5–15 nm), which can be beneficial to such a high reversible capacity. The large irreversible capacity loss of SnO$_2$@GNs/TiO$_2$ in the first cycle can be attributed to the formation of SEI, which consumes a large number of solvent lithium ions.[32] Notably, a voltage plateau appears at ~1.05 V in the discharge process, correspondingly, a voltage plateau at ~0.5 V as well as a slope in the voltage range of 1.0–1.7 V can be seen in the charge process. However, with the current densities increase, the voltage plateau at ~0.5 V gradually disappears and the slope between 1.0–1.7 V becomes quite steep, indicating that major capacity increases in the voltage range of 0.5–1.0 V. It can be deduced that SnO$_2$ nanoparticles play a dominant role in lithium storage in SnO$_2$@GNs/TiO$_2$ at high current densities.[19] The voltage charge/discharge profiles of SnO$_2$@GNs/TiO$_2$ are illustrated in Fig. 5(b). With the cycle number increases, the charge voltage plateaus in the range of 0.3–0.7 V become shortened and declining slopes gradually appear, indicating unavoidable capacity decay. Fig. 5(c) and (d) show the dQ/dV vs. potential curves which are quite similar to the CV curves in Fig. 4(b). The peaks at ~0.5 V associated with the dealloying of SnO$_2$ can be clearly seen as the current density increases and the cycles continue. The large areas between 0.3–1.5 V (primary voltage range of alloying/dealloying in SnO$_2$) show the major capacity increase, further confirming the dominant lithium-storage role of SnO$_2$ in SnO$_2$@GNs/TiO$_2$ composites.

The rate performances of SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs at various current densities in the range of 100–1000 mAh g$^{-1}$ (Fig. 5(e)). SnO$_2$@GNs/TiO$_2$ exhibit reversible capacities around 1131, 793, 621 and 476 mAh g$^{-1}$ at the current densities of 100, 250, 500, and 1000 mAh g$^{-1}$, respectively, which are much higher than those of SnO$_2$/GNs (1056, 713, 588, 394 mAh g$^{-1}$). Considering the lower content of SnO$_2$ in the SnO$_2$@GNs/TiO$_2$ composites (~3.85wt % of GNS, ~9.65wt% of amorphous carbon, ~19.02wt% of SnO$_2$, ~67.48wt% of TiO$_2$ calculated according to the raw reagents), the SnO$_2$@GNs/TiO$_2$ composites exhibit much better rate capability than the SnO$_2$/GNs composites. The specific capacities of both SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs composites decrease obviously at the current density of 100 mAh g$^{-1}$, but the cycle stability is obviously enhanced as the current densities increase. The reversible capacity of the SnO$_2$@GNs/TiO$_2$ composites recovers to 638 mAh g$^{-1}$ when the current density returns to 100 mAh g$^{-1}$. To investigate the cycling performances of SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs, the coin cells were tested at 500 mAh g$^{-1}$ for 200 cycles after aging at 100 mAh g$^{-1}$ for 5 cycles (Fig. 5(f)). SnO$_2$@GNs/TiO$_2$ deliver a charge capacity of 884 mAh g$^{-1}$ with a coulombic efficiency of 98.5%. The irreversible capacity loss (10%) is irreversible owing to the trapping of lithium ions during insertion/extraction in the solid state.[35] The specific capacity of SnO$_2$@GNs/TiO$_2$ tends to fade in the first 50 cycles and becomes stable during the following 50 cycles. Notably, the specific capacity of SnO$_2$@GNs/TiO$_2$ increases gradually, reaching a reversible capacity of 524 mAh g$^{-1}$ over 200 cycles. However, the specific capacity of the SnO$_2$/GNs composites fluctuates after the first 50 cycles, delivering a reversible capacity of 304 mAh g$^{-1}$.

For comparison, recent reports about SnO$_2$@ TiO$_2$ (and graphene) composites are listed in Table 1. SnO$_2$@GNs/TiO$_2$ in our work deliver higher reversible capacity and/or longer cycle life than those related work at the similar current density. The excellent electrochemical performance can be ascribed to the synergetic effects between GNS/TiO$_2$ substrates, SnO$_2$ nanoparticles and the outermost carbon layer.[21,23,36] The hollow tubular graphene/TiO$_2$ nanoscrolls can serve as an effective buffer to alleviate the remarkable volume expansion and shrinkage of SnO$_2$ nanoparticles during alloying/dealloying. Furthermore, the outermost glucose-derived carbon layer dramatically immobilizes the ultrasmall SnO$_2$ nanoparticles, thus prevents their peeling from the substrate of GNS/TiO$_2$ nanoscrolls, as SnO$_2$ nanoparticles contribute predominant capacity in SnO$_2$@GNs/TiO$_2$. So the high electrochemical performance of SnO$_2$@GNs/TiO$_2$ can be attributed to both the high reversible capacity of SnO$_2$, structural stability of TiO$_2$ nanoscrolls and high electronic conductivity of graphene. Based on our research and previous reports, the reasons for the capacity increase along with cycling can be explained as below: (1) considering the capacity contribution from SnO$_2$ plays a dominant role in the SnO$_2$@ graphene/TiO$_2$ hybrid, the pseudocapacitive behavior of SnO$_2$ may lead to the increased capacity along with cycles. In the process of Li$^+$ insertion and de-insertion, inevitable pulverization of SnO$_2$ nanoparticles upon cycling generates more fresh cracks and micropores, which enlarge contact area with electrolytes, resulting in continuous formation of an organic polymer/gel like film. Sun et al. suggested that the reversible formation and decomposition of the organic polymer/gel like film provide extra interfacial lithium storage sites. [17,18] Recently Dunn et al. demonstrated that pseudocapacitive behavior occurs when lithium ions insert into mesoporous and nanocrystalline films.[37] (2) Wang and Shi et al. claimed that the conversion between SnO2 and Li$^+$ (equation (1)) could become reversible to some extent upon cycling, though it is initially considered irreversible.[34,38]
Fig. 5. (a) Charge/discharge voltage curves of SnO$_2$@GNs/TiO$_2$ composites at different current densities, (b) rate performances of SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs composites, (c) and (d) dQ/dV vs. potential curves of SnO$_2$@GNs/TiO$_2$, (e) charge/discharge voltage curves of SnO$_2$@GNs/TiO$_2$ composites in different cycles, (f) cycling performances of SnO$_2$@GNs/TiO$_2$ and SnO$_2$/GNs at the current density of 500 mA g$^{-1}$ between 0.01–3.00 V.

Table 1
List of recent work on SnO$_2$@TiO$_2$ (and graphene) composites as anode materials for lithium-ion battery.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Current density (mA g$^{-1}$)</th>
<th>Cycle number (N)</th>
<th>Reversible capacity after N cycles (mAh g$^{-1}$)</th>
<th>Publication year [Ref.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$-supported-SnO$_2$ nanocomposites</td>
<td>156.4</td>
<td>100</td>
<td>312</td>
<td>2012[39]</td>
</tr>
<tr>
<td>SnO$_2$ nanoparticles in hollow TiO$_2$ nanofibers</td>
<td>136.4</td>
<td>100</td>
<td>~500</td>
<td>2012[40]</td>
</tr>
<tr>
<td>SnO$_2$@TiO$_2$ double-shell nanotubes</td>
<td>800</td>
<td>50</td>
<td>300</td>
<td>2013[22]</td>
</tr>
<tr>
<td>Graphene-TiO$_2$-SnO$_2$ ternary nanocomposites</td>
<td>50</td>
<td>50</td>
<td>537</td>
<td>2013[41]</td>
</tr>
<tr>
<td>TiO$_2$/SnO$_2$/carbon hybrid nanofibers</td>
<td>30</td>
<td>100</td>
<td>442.8</td>
<td>2013[23]</td>
</tr>
<tr>
<td>SnO$_2$/TiO$_2$ core-shell composites</td>
<td>1000</td>
<td>30</td>
<td>505</td>
<td>2013[42]</td>
</tr>
<tr>
<td>TiO$_2$@SnO$_2$/graphene</td>
<td>160</td>
<td>30</td>
<td>600</td>
<td>2013[21]</td>
</tr>
<tr>
<td>SnO$_2$@TiO$_2$/carbon cloth</td>
<td>200</td>
<td>100</td>
<td>700</td>
<td>2014[43]</td>
</tr>
<tr>
<td>SnO$_2$ nanoparticles in hollow TiO$_2$ nanowires</td>
<td>800</td>
<td>500</td>
<td>445</td>
<td>2014[32]</td>
</tr>
<tr>
<td>SnO$_2$@graphene/TiO$_2$</td>
<td>500</td>
<td>200</td>
<td>524</td>
<td>This work</td>
</tr>
</tbody>
</table>
4. Conclusions

In summary, we have designed a facile method to fabricate amorphous carbon encapsulated SnO$_2@$graphene/TiO$_2$. The SnO$_2@$graphene/TiO$_2$ exhibit a reversible capacity of 476 mAh g$^{-1}$ at the current density of 1000 mA g$^{-1}$. After 200 cycles at the current density of 500 mA g$^{-1}$, the reversible capacity of the composites remains 524 mAh g$^{-1}$. The high electrochemical performance of the composites can be attributed to the synergetic effects between the graphene/TiO$_2$ nanoscrolls, SnO$_2$ nanoparticles and amorphous carbon layer. Firstly, the hollow graphene/TiO$_2$ nanoscrolls effectively alleviate the remarkable volume expansion and shrinkage of SnO$_2$ nanoparticles, as well as provide sufficient channels for the fast transport of both electrons and lithium ions. Secondly, the outermost amorphous carbon layer dramatically immobilizes the ultrasmall SnO$_2$ nanoparticles and further enhances the electronic conductivity. This synthetic strategy will be promising in the fields of multi-component composites for energy storage and conversion.

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. CDJZR12 225501 & No. CDZJR13130027) and National Natural Science Foundation of China (No. 51172293). The authors thank the technical support from the Laboratory of New Energy Materials (Chongqing University, China).

References

