Greetings, and thank you for publishing with SAGE. We have prepared this page proof for your review. Please respond to each of the below queries by digitally marking this PDF using Adobe Reader.

Click “Comment” in the upper right corner of Adobe Reader to access the mark-up tools as follows:

For textual edits, please use the “Annotations” tools. Please refrain from using the two tools crossed out below, as data loss can occur when using these tools.

For formatting requests, questions, or other complicated changes, please insert a comment using “Drawing Markups.”

Detailed annotation guidelines can be viewed at: http://www.sagepub.com/repository/binaries/pdfs/AnnotationGuidelines.pdf
Adobe Reader can be downloaded (free) at: http://www.adobe.com/products/reader.html.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>GQ:</td>
<td>Please confirm that all author information, including names, affiliations, sequence, and contact details, is correct.</td>
</tr>
<tr>
<td>GQ:</td>
<td>Please review the entire document for typographical errors, mathematical errors, and any other necessary corrections; check headings, tables, and figures.</td>
</tr>
<tr>
<td>GQ:</td>
<td>Please ensure that you have obtained and enclosed all necessary permissions for the reproduction of artworks (e.g. illustrations, photographs, charts, maps, other visual material, etc.) not owned by yourself. Please refer to your publishing agreement for further information.</td>
</tr>
<tr>
<td>GQ:</td>
<td>Please note that this proof represents your final opportunity to review your article prior to publication, so please do send all of your changes now.</td>
</tr>
<tr>
<td>GQ:</td>
<td>Please confirm that the funding and conflict of interest statements are accurate.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check the sentence ‘In 2011, a jet-pipe …’ for clarity.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check whether the edits made to the sentence ‘The operating principle of …’ are correct.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check whether the edits made to the sentence ‘In addition, a cooling …’ are correct.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check whether the edits made to the sentence ‘Meanwhile, in this stage …’ are correct.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check whether the edits made to the sentence ‘In the middle-stage …’ are correct.</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please note that the variable ‘µ’ in the sentence ‘where µ0 is the permeability of the free space …’ does not appear in equation (2).</td>
</tr>
<tr>
<td>AQ:</td>
<td>Please check whether the edits made to the sentence ‘The model valve is …’ are correct.</td>
</tr>
</tbody>
</table>
Dynamic modelling and experimental investigations of a magnetostrictive nozzle–flapper servovalve pilot stage

Yuchuan Zhu¹,², Xulei Yang¹ and Tiantian Fu¹

Abstract
A magnetostrictive nozzle–flapper servovalve pilot stage is presented in this article, which is directly driven by a giant magnetostrictive actuator and features three nozzles for the development of large flow rate servovalve. According to the energy conversion sequence in this servovalve, a giant magnetostrictive actuator magnetization model, a giant magnetostrictive material rod eddy loss model and a servovalve dynamic pressure model are all established to enable quantitative depiction and modelling of the dynamic pressure response process of magnetostrictive nozzle–flapper servovalve pilot stage. Consequently, the matched simulation model of the magnetostrictive nozzle–flapper servovalve pilot stage with the mathematic model is followed to be established, and two unknown parameters of complex permeability are determined using the test data from the giant magnetostrictive actuator. By running this simulation model, flapper displacement and output pressure under different structural parameters and variational excited frequencies are determined, certain parameters that are sensitive to the dynamic characteristics of magnetostrictive nozzle–flapper servovalve pilot stage driven by giant magnetostrictive actuator are found and the accompanying rules are revealed. Finally, the experimental system of a magnetostrictive nozzle–flapper servovalve pilot stage driven by giant magnetostrictive actuator was built; both the step-input voltage response curve and the sine-input voltage response curve were captured; and these curves show that the amplitude bandwidth (−3 dB) and the phase bandwidth (−90°) of a magnetostrictive nozzle–flapper servovalve pilot stage can approach 150 and 110 Hz, respectively, which exhibit good agreement with the simulation results. Therefore, the magnetostrictive nozzle–flapper servovalve pilot stage offers a very promising prospect of the novel servovalves with the high-frequency response and the large flow rate.

Keywords
System modelling, system simulation, servohydraulic systems, dynamic modelling, physical modelling

Date received: 16 September 2015; accepted: 15 November 2015

Introduction
A traditional double nozzle–flapper servovalve consists of a permanent magnet torque motor or force motor, a double nozzle–flapper pilot valve and a sliding spool main valve.¹ Permanent magnet torque motors or force motors are most widely used to stroke servovalves which convert low-power electrical excitations into rotational or translational motion, and the torque/force produced is proportional to the exciting current. Due to the low power of torque motors or force motors and the small flow rate gain of the double nozzle–flapper valve, their application in large flow rate servovalves is limited.

Continuous development must be performed to achieve excellent design of servovalves. An important issue is improving the actuating dynamics of the electromechanical transformer and the pilot-operated stage hydraulic-amplifier flow gain. This is an area that can benefit from applying smart materials, such as magnetic fluids, piezoelectric materials, magnetostrictive materials and designing new structure pilot-operated valves, such as deflector jet valves and multi-nozzle flapper valves.

¹College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
²Department of Aerospace Engineering, University of Maryland, College Park, MD, USA

Corresponding author:
Yuchuan Zhu, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Email: meeyczhu@nuaa.edu.cn
To improve the dynamic performance of servovalves, many studies have focused on the new torque motors or electromagnetic actuators. Li et al. and Li and Song investigated the influence of magnetic fluids on the dynamic characteristics of permanent magnet torque motors; the results show that magnetic fluid can increase the efficiency of the magnetic circuit and improve the characteristics of torque motors. An energy-saving electro-pneumatic servovalve and a direct-drive servovalve driven by a voice coil motor (VCM) are presented. Lindler and Anderson and Zhou and Tian present a single-stage servovalve using a direct-drive piezoelectric actuator, which offers the potential for faster response compared with traditional two-stage servovalves. Bang et al. investigated two-stage high-speed electro-hydraulic servovalve using stack-type piezoelectric-elements, and Sangiah et al. developed a novel piezohydraulic aerospace servovalve and a piezoelectric first-stage actuator is developed to move a servovalve spool using the deflector jet principle which is especially suited for aerospace actuation requirements. Hiratsuka and Urai designed a giant magnetostrictive actuator (GMA)-based direct-drive servosystem with a 650-Hz bandwidth (−3 dB) but a flow rate of only 2 L/min. In 2001, Urai and Tanaka again presented a servovalve using a giant magnetostrictive tandem actuator with a 250-Hz bandwidth (−3 dB) and a 50 L/min flow rate. In 2002, a pneumatic and hydraulic single nozzle–flapper-type servovalve was analysed and tested. The results showed that the new servovalve’s step rise time is less than 1 ms and that it has a 680-Hz bandwidth (−3 dB). In 2010, Karunamidhi and Singaperumal designed, built and integrated a GMA into an existing flapper–nozzle servosystem; the experimental results demonstrated that the valve step response driven by a GMA can reach 7.8 ms, which is faster than the 11.2 ms response achieved by the conventional torque motor. In 2011, a jet-pipe servovalve driven by a GMA was presented and discussed, in which the use of 0.5 A input current amplitude, the −3 dB bandwidth was approximately 350 Hz. In 2015, a four-nozzle flapper servovalve driven by a GMA is developed.

Moreover, in order to improve the performance of the pilot-operated valve in two-stage servovalve, Aung and Li carried out a numerical study of cavitation phenomenon in a flapper–nozzle pilot stage with different flapper shapes. A computational fluid dynamics (CFD) analysis of flow forces and energy loss characteristics in a flapper–nozzle pilot valve with different null clearances is presented. The characteristic research of the flow field in the flapper–nozzle pilot stage is performed; the results show that the increment of inlet pressure intensifies cavitation in the flapper–nozzle pilot stage and induces the shedding phenomenon. The discharge characteristics of spool valve orifices are simulated by the CFD method and a formula for discharge coefficient and Reynolds number is derived.

In conclusion, the existing studies suggest that the dynamic characteristics of a traditional servovalve can be improved by redesigning the structure of the servovalve and incorporating smart materials, such as piezoelectric materials and magnetostrictive materials. Among these smart materials, giant magnetostrictive materials (GMMs) have the following characteristics: large strain, high reliability, large energy density, fast response, broad bandwidth and intelligent response. GMAs enabled the development of a totally new class of electromechanical devices with higher energy density, faster response and better precision than previously possible. GMAs are one of the most exciting new actuator technologies available today and have revealed new design options for mechanical and electrical engineers alike.

Generally, it is difficult to achieve high-frequency response for a large flow servovalve; however, a multi-nozzle valve configuration such as three-nozzle can increase the flow gain observably without substantially slowing response; in addition, the use of fast and stiff magnetostrictive actuators as valve drives offers advantages for valve characteristics concerning high frequency and large output power; thus, this article reports the dynamic response investigations of a novel servovalve concept distinguished by three-nozzle structures and GMA direct driving, which have the potential to provide faster response and higher flow rate than traditional double nozzle–flapper servovalves driven by permanent magnet torque motors did and offer very promising prospects of the novel servovalves with the high-frequency response and the large flow rate.

Valve configuration and energy transformation process

Figure 1 shows the configuration of magnetostrictive nozzle–flapper servosystem pilot stage (MNSP), which consists of a GMA (left) and a three-nozzle flapper valve (right). A GMA mainly includes adjusting bolt, coils, shell, GMM rod and output rod (flapper), and a three-nozzle flapper valve mainly consists of the flapper, the fixed orifice and the three nozzles. The operating principle of MNSP is as follows: the oil is supplied to the servovalve from the fixed orifices to the nozzles and the oil pressure control port; when the coils are excited and generate the applied field, the GMM rod elongates; meanwhile, the clearance between the flapper and the nozzle is changed, and thus, the control pressure varied in proportion with the excited current accordingly. In addition, a cooling and thermal compensation system is designed to address the issue that the thermal expansion of the GMM rod weakens the precision of servovalve; the leakage oil flows in the direction as shown in Figure 1, which can cool the coil and keep the temperature of the coil close to the temperature of shell; under this situation, the temperature rise of the coil leads to GMM rod thermal expansion...
and the temperature rise of the shell leads to the thermal expansion itself which can be transferred to the adjusting bolt; thus, the adjusting bolt moves left to compensate the thermal expansion of the GMM rod, and the thermal compensation precision can be ensured by designing the length and the thermal expansion coefficient of shell.

As shown in Figure 2, the energy conversion and control process in an MNSP involves three stages: the first stage from the electrical energy to the magnetic energy, the second stage from magnetic energy to the elastic potential energy and the third stage to control the hydraulic energy by the elastic potential energy.

In the first stage, electrical–magnetic energy transformation is achieved, which can be described by the magnetization model to describe the relationship between the exciting current and the magnetization of the GMM rod. Meanwhile, in this stage, it should not be neglected that the eddy current in the GMM rod weakens the electrical–magnetic energy transformation efficiency and can be modelled by the dynamic magnetization model with eddy loss.

In the middle-stage implements, a magnetoelastic energy transformation can be modelled by the magnetoelastic model to describe the relationship between the magnetostriuctive strain and the magnetization intensity of the GMM rod; in this stage, the GMM rod can be abstracted into unidimensional elastic body and then the magnetization intensity of the GMM rod would lead to a magnetostrictive force which can be depicted by quadratic domain rotation model and Hooke’s law; thus, the dynamic behaviour in this stage can be described by spring–dashpot–mass model, that is, a strain-based dynamic displacement of the GMM rod would be governed by the magnetization intensity; in addition, the flow force result from the nozzle–flapper valve would act on the GMM rod as a load.

In the final stage, the hydraulic energy controlled by the elastic potential energy is obtained, and the strain-based dynamic displacement of the GMM rod would be transmitted to the flapper, which would regulate the clearance between the flapper and nozzle to change the control pressure in the chamber between the fixed orifice and nozzle.
Dynamic performance model

Based on the energy conversion process in an MNSP, the dynamic model of an MNSP involves five submodels from the viewpoint of energy conversion and control: the magnetization model of the GMM rod without eddy current effect, the magnetization model of the GMM rod with eddy current effect, the magnetoelastic model of the GMM rod, the flow force model on the flapper and the dynamic control pressure model in the chamber between the fixed orifice and nozzle.

Magnetization model of GMM rod without eddy current effect

The applied magnetic field \(H \) generated by an alternating current \(i \) is given by

\[
H = \frac{Ni}{k_i L_G} = \frac{N l_m}{k_i L_G} \cos \omega t = H_m \cos \omega t
\]

where \(N \) is the number of the excitation coil turns, \(l_m \) is the amplitude of the alternating current, \(k_i \) is the leakage coefficient of the magnetic flux, \(L_G \) is the length of the GMM rod, \(H_m \) is the amplitude of the applied magnetic field and \(\omega \) is the angular frequency.

In a sinusoidal magnetic field, the relative permeability of a GMM rod is a complex number, and the magnetization \(M \) can be deduced from the applied magnetic field \(H \)

\[
M = \sqrt{\left((\mu_r - 1) - (\mu_i)^2 \right)^2 + (\mu_i)^2 H_m \cos (\omega t - \theta_h)}
\]

where \(\mu_r \) is the permeability of the free space, \(\mu \) is the real part of the complex relative permeability, \(\mu_i \) is the imaginary part of the complex relative permeability and \(\mu_r \) is the relative permeability.

The lag angle \(\theta_h \) caused by hysteresis is

\[
\theta_h = \arctan \left(\frac{\mu_i}{\sqrt{\mu_r^2 - (\mu_i)^2}} \right)
\]

Magnetization model of GMM rod with eddy current effect

When the GMM rod is excited by high-frequency alternating current, the eddy loss occurs in the GMA, which will decrease its response speed. The magnetization intensity \(M \) in the GMM rod can be written as

\[
M = (|\mu_r| - 1) H
\]

The energy of magnetization for the eddy loss in the dynamic state can be written as

\[
\mu_0 \int M_{\text{eddy}} dH \approx \mu_0^2 \left(\frac{D_G^2}{2 \rho \beta} \right)^2 \left(\frac{dM}{dt} \right)^2 dt
\]

where \(M_{\text{eddy}} \) is the magnetization intensity for the eddy loss, \(\rho \) and \(D_G \) are the electrical resistivity and the diameter of the GMM rod, respectively; and \(\beta \) is a geometric factor.

Taking the derivative with respect to \(t \) of both the sides of equation (5) leads to

\[
M_{\text{eddy}} = \mu_0 D_G^2 \frac{dM}{dt} \frac{dM}{dt} = \mu_0 (|\mu_r| - 1) \frac{D_G^2}{2 \rho \beta} \frac{dM}{dt}
\]

Consequently, the energy equation for the eddy loss based on equation (6) is

\[
\int M_{\text{eddy}} dH = \int (|\mu_r| - 1) H dH - \int M_{\text{eddy}} dH
\]

Taking the derivative with respect to \(H \) of both the sides of equation (7) leads to

\[
M = \mu_0 |\mu_r| H - M_{\text{eddy}} = (|\mu_r| - 1) H
\]

Taking the Laplace transform of equation (8), the actual magnetization intensity \(M \) in the GMM rod becomes

\[
M = \frac{(|\mu_r| - 1) H}{\mu_0 (|\mu_r| - 1) \frac{D_G^2}{2 \rho \beta} s + 1}
\]

where \(\tau = \mu_0 (|\mu_r| - 1) (D_G^2/2 \rho \beta) \) is the eddy time constant.

Magnetoelastic model of GMM rod

Under the excitation from driving magnetic field, the magnetostrictive rate \(\lambda = \Delta \lambda / \lambda \) describes the relative change quantity in length of the GMM rod; based on the quadratic domain rotation model, \(32 \) the magnetostrictive rate \(\lambda \) is given by

\[
\lambda = \frac{3 \lambda_S}{2 M_S^2} M^2
\]

where \(\lambda_S \) and \(M_S \) are the saturation magnetostriction and the saturation magnetization, respectively.

The process of magnetic–mechanic coupling can be expressed by Figure 3. When the magnetic field intensity is changed within a limited range, following Hooke’s law, the magnetostrictive force generated by the GMM rod can be approximately defined as

\[
F = A_G E_G \lambda
\]
where A_G is the cross-sectional area of the GMM rod, E_G is the elasticity modulus of the GMM rod and λ is the magnetostrictive rate.

The force balance equation of GMA is

$$F = m_c \frac{d^2 x_f}{dt^2} + B_e \frac{dx_f}{dt} + k_e x_f + F_L$$ \hspace{1cm} (12)

where x_f is the strain-based displacement of GMM rod, which is the same with the displacement of flapper; m_c is the equivalent mass of GMM rod; m_1 and m_2 are the mass of the GMM and output rods, respectively; B_e is the equivalent damping coefficient; k_e is the equivalent stiffness coefficient for the GMM rod, $k_e = A_G E_G / L_G$; and F_L is the flow force of oil from the nozzle to the flapper.

Based on equations (10)–(12), the magnetoelastic model of the GMM rod which described the process from the magnetic intensity to the strain-based displacement of GMM rod can be written as

$$\frac{3 \lambda_s}{2 M_s^2} M^2 A_G E_G = m_c \frac{d^2 x_f}{dt^2} + B_e \frac{dx_f}{dt} + k_e x_f + F_L$$ \hspace{1cm} (13)

Flow force model on the flapper

Flow force is the force applied on the flapper, which can be shown by Figure 4 according to the nozzle–flapper configuration in Figure 1; using Bernoulli’s equation, the flow force can be written as follows

$$F_L = 3 p_N A_N + 3 p q_1 v_1$$ \hspace{1cm} (14)

where A_N is the area of the plane of the nozzle diameter, v_1 is the fluid velocity at the plane of the nozzle diameter, q_1 is the flow rate through the nozzle and p_N is the static pressure of the plane of the nozzle diameter, which can be written as follows based on Bernoulli’s equation

$$p_N = p_c - \frac{1}{2} \rho \dot{v}_1^2$$ \hspace{1cm} (15)

where p_c is the pressure of control chamber between the fixed orifice and nozzle.

Combining equations (14) and (15), we obtain

$$F_L = 3 \left(p_c - \frac{1}{2} \rho \dot{v}_1^2 \right) A_N$$ \hspace{1cm} (16)

Meanwhile, v_1 can be written as follows

$$v_1 = \frac{q_1}{A_N} = \frac{4 C_{df}(x_{\text{fl}} - x_f) \sqrt{2 \rho_c / \rho}}{D_N}$$ \hspace{1cm} (17)

where x_{fl}, x_f, D_N and C_{df} are the flapper position at null, flapper displacement, nozzle diameter and nozzle discharge coefficient, respectively.

Substituting equation (17) into equation (16) yields

$$F_L = 3 p_c A_N \left[1 + \frac{16 C_{df}^2 (x_{\text{fl}} - x_f)^2}{D_N^2} \right]$$ \hspace{1cm} (18)

Dynamic control pressure model in the chamber between the fixed orifice and nozzle

As is shown in Figure 4, the load flow of MNSP q_L equation is

$$q_L = C_{\text{df}} A_0 \sqrt{\frac{2}{\rho} (p_s - p_c) - 3 C_{\text{df}} \pi D_N (x_{\text{fl}} - x_f) \sqrt{\frac{2}{\rho} p_c}}$$ \hspace{1cm} (19)

$$\dot{p}_c = \frac{B_e}{V_c} q_L$$ \hspace{1cm} (20)

where C_{df} is the flow coefficient of the fixed orifice, A_0 is the area of the fixed orifice, B_e is the effective bulk modulus of hydraulic oil between the fixed orifice and nozzle and V_c is the volume of hydraulic oil between the fixed orifice and nozzle.

If the load is blocked, $q_L = 0$, set $a = (C_{\text{df}} \pi D_N x_{\text{fl}}) / (C_{\text{df}} A_0)$ and $x_f = 0$ at null, then $p_c = (p_s) / (9 a^2 + 1)$. Equation (19) is a nonlinear function, expand equation (19) at null in Taylor series and use the above null boundary conditions and the linear form of equation (19) can be written as

![Figure 3. Sketch of GMA magnetic–mechanic coupling.](Image)

![Figure 4. A flow force diagram at the nozzle–flapper.](Image)
\[q_L = \frac{\partial q_L}{\partial x_f} \frac{\partial}{\partial p_c} - \frac{\partial q_L}{\partial p_c} \]
\[= C_{d0} A_0 \sqrt{\frac{2}{\rho} \rho_s \frac{3 a}{\eta_0} \sqrt{\frac{1}{9 a^2 + 1} x_f - \frac{\sqrt{(9 a^2 + 1)^3}}{6 a \eta_0} p_c} \]

(21)

Substituting equation (21) into equation (20)
\[\dot{p}_c = \frac{\beta_c}{V_c} C_{d0} A_0 \sqrt{\frac{2}{\rho} \rho_s \frac{3 a}{\eta_0} \sqrt{\frac{1}{9 a^2 + 1} x_f - \frac{\sqrt{(9 a^2 + 1)^3}}{6 a \eta_0} p_c} \]
\[- \frac{\beta_c}{V_c} C_{d0} A_0 \sqrt{\frac{2}{\rho} \rho_s \sqrt{\frac{1}{9 a^2 + 1}} \sqrt{\frac{(9 a^2 + 1)^3}{6 a \eta_0} p_c} \]

(22)

Laplace transform to equation (22) yields
\[\frac{\dot{p}_c(s)}{x(s)} = \frac{\frac{\beta_c}{V_c} C_{d0} A_0 \sqrt{\frac{2}{\rho} \rho_s \frac{3 a}{\eta_0} \sqrt{\frac{1}{9 a^2 + 1} x_f - \frac{\sqrt{(9 a^2 + 1)^3}}{6 a \eta_0} p_c} \}
\[\times s + \frac{\beta_c}{V_c} C_{d0} A_0 \sqrt{\frac{2}{\rho} \rho_s \sqrt{\frac{1}{9 a^2 + 1}} \sqrt{\frac{(9 a^2 + 1)^3}{6 a \eta_0} p_c} \]

(23)

Therefore, equation (23) is the dynamic control pressure model in the chamber between the fixed orifice and nozzle which describes the elastic–hydraulic adjusting process in MNSP.

In addition, the leakage flow rate can be written as follows
\[Q_c = 3 C_{d0} \pi D_0 x_f \sqrt{\frac{p_s \rho}{\rho}} \]

(24)

The leakage flow rate is used to cool the coils and compensate the thermal expansion of GMM rod, which can help to reduce the temperature of the GMM rod and improve the precision of servovalve.

Model simulation

Parameter identification

The first unknown parameter is the relative permeability of the GMM rod from magnetization model of the GMM rod; the identification method is as follows.

Coil inductance \(L \) with a GMM rod and coil inductance \(L_0 \) without a GMM rod in giant magnetostrictive transducer can be related as follows
\[L = |\mu_r| L_0 \]

(25)

Thus, we can show that \(|\mu_r| = 5 \) by measuring the values of \(L \) and \(L_0 \) around the bias magnetic field.

The other parameter that needs to be identified is the imaginary part of the relative complex permeability \(\mu'_m \). Based on the identification method presented in the literature,\(^3^2\) we can determine the imaginary part of the relative complex permeability to be \(\mu'_m = 2.2 \). The other parameters are known and shown in Table 1. Accordingly, in addition to the two parameters verified above, the other model parameters are shown in Table 1.

Simulation results and analysis

Step response results. By running the simulation, some parameters that are sensitive to the dynamic characteristics of MNSP are found, and the accompanying rules are obtained. The diameter, length of the GMM rod

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coil resistance</td>
<td>(R)</td>
<td>(\Omega)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Coil inductance</td>
<td>(L)</td>
<td>mmH</td>
<td>10^4</td>
</tr>
<tr>
<td>3</td>
<td>Open-loop gain of</td>
<td>(K_u)</td>
<td>l</td>
<td>10^4</td>
</tr>
<tr>
<td>4</td>
<td>Vacuum permeability</td>
<td>(\mu_v)</td>
<td>H/m</td>
<td>4\pi \times 10^{-7}</td>
</tr>
<tr>
<td>5</td>
<td>Relative permeability of GMM rod</td>
<td>(\mu_r)</td>
<td>l</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Equivalent mass of GMM rod</td>
<td>(m_e)</td>
<td>kg</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>Equivalent stiffness</td>
<td>(k_e)</td>
<td>N/m</td>
<td>2.36 \times 10^6</td>
</tr>
<tr>
<td>8</td>
<td>Diameter of nozzle</td>
<td>(D_A)</td>
<td>mm</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>Diameter of fixed orifice</td>
<td>(D_D)</td>
<td>mm</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>Density of GMM rod</td>
<td>(\rho_g)</td>
<td>kg/m^3</td>
<td>9250</td>
</tr>
<tr>
<td>11</td>
<td>Electrical resistivity of GMM rod</td>
<td>(\rho)</td>
<td>(\Omega) m</td>
<td>6 \times 10^{-7}</td>
</tr>
<tr>
<td>12</td>
<td>Bulk modulus of elasticity of GMM rod</td>
<td>(E_e)</td>
<td>GPa</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Flow coefficient</td>
<td>(C_{df})</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Diameter of GMM rod</td>
<td>(D_G)</td>
<td>mm</td>
<td>0.8</td>
</tr>
<tr>
<td>15</td>
<td>Length of GMM rod</td>
<td>(L_G)</td>
<td>mm</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>Pressure of oil source</td>
<td>(p_s)</td>
<td>MPa</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>Flapper position at null clearance</td>
<td></td>
<td>mm</td>
<td>0.06</td>
</tr>
<tr>
<td>18</td>
<td>Eddy time constant</td>
<td>(\tau)</td>
<td>l</td>
<td>2.6 \times 10^{-5}</td>
</tr>
<tr>
<td>19</td>
<td>Equivalent damping coefficient of GMM rod</td>
<td>(B_a)</td>
<td>N/s/m</td>
<td>2000</td>
</tr>
<tr>
<td>20</td>
<td>Saturation magnetization</td>
<td>(M_s)</td>
<td>A/m</td>
<td>7.65 \times 10^5</td>
</tr>
<tr>
<td>21</td>
<td>Bias magnetization</td>
<td>(M_b)</td>
<td>A/m</td>
<td>2.0 \times 10^5</td>
</tr>
<tr>
<td>22</td>
<td>Saturation magnetostriction</td>
<td>(\lambda_s)</td>
<td>l</td>
<td>1005 \times 10^{-6}</td>
</tr>
</tbody>
</table>

GMM: giant magnetostrictive material.
and equivalent stiffness play more important roles regarding the step response of MNSP than the other parameters.

As Figure 5(a) shows, when the diameter of the GMM rod D_G is 8 mm, the step response time of the steady-state output flapper displacement is approximately 4 ms; however, this value changed to 3 and 2 ms when the value of D_G is 10 and 12 mm, respectively. As Figure 5(b) indicates, for the same step-input signal, accordingly, the steady-state output flapper displacement value will reach 15, 17 and 19 μm when the length L_G of the GMM rod is 80, 100 and 120 mm, respectively, and the resulting rise times will be 3, 4 and 5 ms, respectively.

In a similar way, as Figure 5(c) indicates, the steady-state output flapper displacement value will be 10, 15 and 22 μm for equivalent stiffness values k_e of 4.71×10^6, 2.36×10^6 and 1.57×10^6 N/m, respectively, and the resulting rise times will be 2, 4 and 6 ms, respectively.

Similar rules can be found in the control pressure step response curve shown in Figure 6, which confirm that the step response of an MNSP is only controlled by the dynamic response of the GMA and does not depend on the parameters of the flapper valve.

Comparison of sine-response results with hysteresis and eddy current effect. In an MNSP, the dynamic process responding to a sine-input signal involves three sequential stages: (1) from the input voltage to the magnetization of the GMM rod, (2) from the magnetization to the elastic strain of the GMM rod and (3) from the elastic strain of the GMM rod to the fluid control pressure of the MNSP. In the first stage, electromagnetic energy transformation is achieved, the second stage performed magnetoelastic energy transformation and the final stage results in elastic–hydraulic energy adjusting.

To further distinguish the effect on the dynamic response of an MNSP exerted by electromagnetic, magnetoelastic and elastic–hydraulic energy adjusting process, a group of sine-response curves were constructed, as shown in Figure 7, at excited frequencies from 10 to 250 Hz.

As Figure 7 shows, ‘1’ represents a control pressure curve without static hysteresis, ‘2’ is a control pressure curve with static hysteresis, ‘3’ consists of a magnetization intensity curve without static hysteresis and ‘4’ is a magnetization intensity curve with static hysteresis. Additionally, the left vertical coordinates indicate the magnetization intensity, and the right vertical coordinates indicate the control pressure.
coordinates indicate the control pressure. The phase lag angles are 36.6°, 17.2° and 5.9° with the driving frequencies 100, 50 and 10 Hz, respectively; moreover, the phase lag angles are 53.4°, 75.4° and 84.7° with the driving frequencies 150, 200 and 250 Hz. In addition, it can be observed that static hysteresis exerts a minor role above 50 Hz. It should be noted that the phase lag angle here is the angle between the magnetization of the GMM rod and the output control pressure, not the angle between the input voltage and the output control pressure, which are much larger than 53.4°, 75.4° and 84.7° with the driving frequencies 150, 200 and 250 Hz because of the eddy current effect of the GMM rod.

Test rigs and test results

Test equipment and test methods

As shown in Figure 8, a model machine (Figure 1(b)) is designed, fabricated, assembled and measured. The
Dynamic pressure response data of the model machine valve under a step-input signal and a sinusoidal input signal are collected by a pressure sensor. The test system used to determine the dynamical characteristics of an MNSP consists of an oil source module (rated flow 11.28 L/min and rated pressure 10 MPa), a model valve module, a measure module (pressure sensor M5100, measuring range 0–10 MPa, accuracy $\pm 0.25\%$, oscilloscope TDS1012B and driving module (signal generator DG1022)). A schematic and picture of the model valve test rig are shown in Figure 8(a) and (b), respectively.

The input current electrifying the GMA is generated by a signal generator and a power amplifier and is used to produce the GMA displacement. The control pressure is then generated, measured and transmitted to an oscilloscope.

Step excitation results

The model valve is first excited by a square wave input voltage with an amplitude ranging from 0 to 1 V, the corresponding current from 0 to 2 A and the supply source pressure 7 MPa, and then, the pressure response data from a pressure sensor are recorded by an oscilloscope.

The raw recorded voltage data from pressure sensor are shown in Figure 9(a) and (b); CH1 and CH2 denote the input voltage from signal generator and the output voltage from pressure sensor, respectively. One notable feature in Figure 9(a) and (b) is that the vertical axis scale is 100 mV per grid length for the output pressure and 200 mV for the input voltage; in addition, the horizontal axis scale is 10 ms per grid length for Figure 9(a) and 2.5 ms for Figure 9(b), which can be seen in the bottom of every figure; as shown in Figure 9(b), the 10%–90% rise time of the output pressure is approximately 2.5 ms.

Based on the experimental data in Figure 9(a) and (b), the comparison between the test data and the model results can be seen in Figure 9(c); we can see that this servovalve can achieve a short transition process without ripples and over-adjustment, which shows good agreement with the predicted results of the above-mentioned mathematical model and simulation results.

Sinusoidal excitation results

The pressure response observed with a sinusoidal supply signal is analysed. The operating conditions are supply source pressure 7 MPa and exciting coil current 1 A. The pressure response curves when the voltage frequency was varied from 30 to 200 Hz were captured by an oscilloscope and are presented in Figure 10.

The raw recorded voltage data from pressure sensor are shown in Figure 10(a)–(f); CH1 and CH2 denote the input voltage from signal generator and the output voltage from pressure sensor, respectively. One notable feature in Figure 10 is that the vertical axis scale is 500 mV per grid length for the output pressure in Figure 10(a)–(d), 200 mV in Figure 10(e) and (f) and 100 mV for the input voltage in Figure 10(a)–(f); in addition, the horizontal axis scale is 25 ms per grid length for Figure 10(a), 10 ms for Figure 10(b)–(d) and 5 ms for Figure 10(e) and (f), which can be seen in the bottom of every figure.

As shown in Figures 10 and 11, for the input voltage, when its amplitude is constant and its frequency varies from 30 to 200 Hz in the sinusoidal wave, the measured amplitude of the output control pressure from the pressure sensor according to around 150 Hz reduces to 70.7% that of around 30 Hz. Meanwhile, when the phase lag angle between the input voltage and output control pressure is around 90° and the input voltage frequency reaches to around 110 Hz, which are in good agreement with the prediction results from the presented model, as shown in Figure 11.

Conclusion

In this article, a servovalve configuration, known as MNSP, is presented. The primary focus of the research was the dynamic pressure characteristics of the MNSP. A GMA magnetization model, which included the complex magnetic permittivity and can describe the static hysteresis of GMA, is first built. Then, a GMA...
magnetization model with eddy loss is obtained based on the magnetic–elastic energy transformation principle. Finally, the dynamic control pressure model is deduced based on the elastic–hydraulic conversion.

By running this simulation model, the relationship between the flapper displacement and control pressure is determined under different structural parameters and the excited frequency; accordingly, some structural parameters that are sensitive to the dynamic characteristics of MNSP are found, and the accompanying rules are obtained. The diameter and the length of the GMM rod and the equivalent stiffness play more important roles regarding the step response of MNSP than the other parameters.

Based on the simulation results, by comparison with the dynamic processes of electrical–magnetic energy transformation and magnetic–hydraulic energy adjusting process, the phase angle between the magnetization of GMM rod and the output control pressure can be obtained; the phase lag angles are 36.6°, 17.2° and 5.9° with the driving frequencies 100, 50 and 10 Hz, respectively; moreover, the phase lag angles are 53.4°, 75.4°...
and 84.7° with the driving frequencies 150, 200 and 250 Hz, respectively.

A dynamic performance test system of an MNSP was built, and the test data and curves using both step-input and sine-input voltages were captured by the oscilloscope, which show that the amplitude bandwidth (−3 dB) and the phase bandwidth (−90°) of an MNSP can approach 150 and 110 Hz, respectively, and agree well with the prediction results from the presented model. The research results offer a promising prospect of the novel servovalves with the high-frequency response and the large flow rate.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51175243).

References

