 NF-κB 及其调控的 miRNA
在宫颈癌移植瘤及癌旁组织中的活化和表达

甘自立, 谌宇武, 林红, 李勇, 熊秋迎, 刘丝菇, 郭菲

(南昌大学 第一附属医院 1. 烧伤中心; 2. 肿瘤科; 3. 病理科; 4. 妇产科; 5. 南昌大学 研究生院; 6. 南昌县疾控中心, 江西 南昌 330006)

摘要:目的 分析宫颈癌移植瘤小鼠的癌与癌旁组织中 miR-15b 和 miR-16 的表达状况以及 NF-κB 信号通路在宫颈癌癌旁组织激活情况, 为宫颈癌的诊断和治疗提供新思路。方法 建立小鼠宫颈癌移植瘤模型, 取癌组织与癌旁组织, 及正常脂肪组织, 用实时荧光定量 PCR 方法检测 miR-15b 和 miR-16 的表达, 用免疫组化检测 NF-κB (P65) 蛋白的表达及定位。结果 移植瘤造模成功。miR-15b 在宫颈癌组织中表达为 32.21 ± 3.67, 明显高于癌旁组织的 28.63 ± 2.34, 且正常组织的 25.16 ± 1.86。miR-16 在宫颈癌组织中表达为 22.16 ± 1.76, 且正常组织的 20.00 ± 0.12。NF-κB (P65) 蛋白主要定位于胞质, 而在癌组织与癌旁组织中, NF-κB (P65) 蛋白主要位于胞核。结论 NF-κB 通路及其相关的 miR-15b 和 miR-16 可能参与了宫颈癌发生的早期分子事件。

关键词: 宫颈癌; NF-κB; miR-15b; miR-16

中图分类号: R 737.33 文献标志码: A

NF-κB signal pathway and downstream microRNA activation/expression in xenografted cervical cancer and its adjacent tissues

GAN Zi-li, CHEN Mo-wu, LIN Hong, LI Yong, XIONG Qiu-ying, LIU Si-sun, GUO Fei

(1. Burns Institute; 2. Dept. of Oncology Medicine; 3. Dept. of Pathology Medicine; 4. Dept. of Gynecology and Obstetrics Medicine, the First Affiliated Hospital; 5. College of Postgraduate, Nanchang University; 6. Centre for Disease Control, Nanchang County, Nanchang 330006, China)

Abstract: Objective To investigate the expression of miR-15b and miR-16 as well as NF-κB signaling in xenografted cervical cancer and its adjacent tissues. Methods The xenograft mouse model of cervical cancer was successfully established. Xenografted cancer and its adjacent tissues, normal fat tissues were collected respectively. The expression of miR-15b and miR-16 was detected by real-time PCR. The expression and sublocation of NF-κB (P65) was analyzed by immunohistochemistry technology. Results HE staining of the xenograft indicated that the model was successful. The miR-15b level in the cancer were 32.21 ± 3.67, which were significant higher than that
in adjacent tissues 25.16 ± 1.86 and normal fat tissue 1.00 ± 0.12 (P < 0.05), miR-15b-level in adjacent tissues was also significantly higher than that in normal fat tissue (P < 0.05); miR-16 levels in the cancer were 28.63 ± 2.34, which was significantly higher than that in adjacent tissues 22.16 ± 1.76 and in normal fat tissue 1.00 ± 0.12 (P < 0.05). NF-κB(P65) was mainly found in cytosol of normal adipose tissues, whereas in cervical cancer tissues and adjacent non-tumorous tissues, NF-κB(P65) translocated into the nucleus. Conclusions NF-κB signal pathway and its regulated miR-15b and miR-16 were significantly upregulated in both cancer tissues and adjacent tissues. The NF-κB signal pathway and its regulated miR-15b and miR-16 were involved in early molecular events of cervical cancer.

Key words: cervical cancer; NF-κB; miR-15b; miR-16

宫颈癌是发生在全球妇女中第二大常见的恶性肿瘤，其死亡率已跃居各类妇科恶性肿瘤之首[1]，近年来，宫颈癌的诊断及综合治疗水平取得了很大的进展，因此其发病率和死亡率并并未发生根本性的变化，因宫颈癌防治的研究必须高度重视。NF-κB是一种重要的核转录因子，也是细胞因子因子，主要调控“生存性或抗凋亡蛋白”，因此在宫颈癌发生过程中可提高肿瘤细胞穿刺率，抑制细胞凋亡[2]。本研究初步试验宫颈癌中存在NF-κB的转录式激活[3]，然而癌细胞联同作为重要的肿瘤微环境，是其在宫颈癌发生发展中的作用未见报道。本实验利用实时荧光定量和免疫组化的方法，研究癌旁组织中是否在NF-κB信号通路的活化，探讨NF-κB信号通路在宫颈癌发生的早期分子事件中所起的作用，可否成为宫颈癌预防治疗的新靶点。

1 材料与方法

1.1 材料

鼠源性宫颈癌细胞系 U14 (江西省医学科学研究所), 清洁级昆明小鼠, 雌性, 5 ~ 7 周龄, 20 ~ 22 g, 32 只[南昌大学实验动物科学部, 合格证号: 赣(动)-96021]。

1.2 主要试剂

miRNA 反转录试剂盒 (TaKaRa 公司); PCR Master Mix (北京全式金生物技术有限公司); Trizol 试剂 (Invitrogen 公司); HRP 标记 II 抗; NF-κB(P65) I 抗 (中杉金桥公司)。

1.3 实验方法

1.3.1 小鼠 U14 宫颈癌移植瘤模型的建立: 取小鼠 U14 宫颈癌细胞悬液接种于 2 只小鼠腹腔, 2 周后急性颈枕脱臼处死腹水饱满的小鼠, 抽取乳白色腹水为瘤源, 铁锈蓝溶液细胞悬浮率大于 95% 后调整细胞浓度至 2×10²/mL, 向 30 只小鼠右侧腋窝皮下接种细胞悬液, 每只 0.2 mL。接种后每日观察小鼠的生活习性及成瘤情况。待瘤块直径大小为 1.5 cm ± 1.5 cm (约 15 日后), 将其急性颈枕脱臼处死, 取癌组织与正常组织 2 cm以上的癌旁组织, 以及正常脂肪组织于 EP 管中, 储存于 -80℃ 冰箱备用。

1.3.2 取材及荧光定量 PCR 检测 miR-15b 和 miR-16 的表达: 利用 Trizol 试剂提取总 RNA, 反转录参照 miRNA 反转录试剂盒说明书进行, 在冰上操作, 按说明书配制反应液, 反应条件参照说明书。所得 cDNA 于冰上分装, 于 -80℃ 冰箱。构建 miR-15b、miR-16 和 U6 的实时定量反应体系（总反应体系 20 μL), 置于 ABI 7500 PCR 仪中扩增, 反应条件如下: 95℃ 10 min, 95℃ 15 s, 60℃ 30 s, 72℃ 32 s, 加融解曲线, 40 个循环, 于 72℃ 32 s 收集数据。同时设无模板对照及水的对照。由于实时定量 PCR 灵敏度较高, 每个标本做 3 个复管。

1.3.3 PCR 产物的相对定量分析: 采用 U6 作为内参, 用它的拷贝数作为校正基数, 通过 SDS 软件获得各样本的 miR-15b 和 miR-16 的 Ct 值, 与相同样本 U6 的 Ct 值相减, 得到 ΔCt 值, 用正常脂肪组织的ΔCt 值作为校正, 得到 −ΔΔCt 值, 用公式 2−ΔΔCt 计算各样本中 miR-15b 和 miR-16 的表达量。

1.3.4 免疫组化检测 NF-κB(P65) 抗体在组织中细胞质和细胞核的表达: 将各组织切片行 HE 染色诊断和免疫组化分析。石蜡切片常规二甲苯脱蜡, 稀度乙醇水化, 微波修复抗原。1% 胎牛血清封闭 10 min, 吸干封闭液, 加入 NF-κB(P65) I 抗(浓
度1: 100), 4 °C 过夜，0.01 mol/L PBS 洗涤。随后加入1:100 辣根过氧化物酶标记的二抗，室温孵育30 min PBS 洗涤，DAB 显色，苏木精复染，脱水，透明，中性树胶封固。在资深病理科医生指导下进行结果的分析判断，NF-κB(P65)蛋白活化后, 主要表达于胞核, 少部分位于胞质, 处于未活化状态时, 则主要表达于胞质。以上部位出现黄色颗粒分布并明显高于背景着色为阳性。结果判定引用参考文献[4] 的方法，每张切片选取5 个高倍镜视野, 分别计数每一视野中阳性细胞数占总细胞数的百分数。5 个视野阳性细胞百分数之平均数为该例阳性细胞百分数的结果。测定免疫组化反应阳性颗粒的平均吸光度 A 值, 对 NF-κB(P65)蛋白的表达作半定量分析。

1.4 统计学分析
应用统计软件 SPSS 17.0 进行统计分析，数据资料用均数 ± 标准差(x ± s) 表示, 采用方差分析 (ANOVA) 和 t 检验。

2 结果

2.1 成功建立小鼠腹水瘤模型和皮下移植瘤模型
约15 d后, 肉眼可见明显皮下移植瘤, 大小约1.5 cm × 1.5 cm, 成瘤率 100%。 HE 染色见宫颈癌移植瘤细胞浸润皮下脂肪生长(图 1)。

A. ascites tumor mode; B. xenograft mouse model; C. xenograft tissue (×200)

图 1 小鼠宫颈癌移植瘤模型
Fig 1 The xenograft mouse model of cervical cancer

2.2 miR-15b 和 miR-16 在癌组织及癌旁组织高表达
图 2 为 miR-15b, miR-16 和 U6 在各组织的溶解曲线, 呈单峰说明实验特异性较好。miR-15b 在宫颈癌组织中表达为 32.21 ± 3.67, 高于癌旁组织的 25.16 ± 1.86 和正常组织(P < 0.05), 癌旁组织也显著高于正常组织(P < 0.05); miR-16 在宫颈癌组织中表达为 28.63 ± 2.34, 高于癌旁组织的 22.16 ± 1.76 和正常组织(P < 0.05), 癌旁组织也显著高于正常组织(P < 0.05)(图 3)。

A. the dissociation curve of miR-15b in cervical cancer tissues, adjacent non-tumorous tissues, normal tissues; B. the dissociation curve of miR-16 in cervical cancer tissues, adjacent non-tumorous tissues, normal tissues; C. the dissociation curve of U6 in cervical cancer tissues, adjacent non-tumorous tissues, normal tissues

图 2 miR-15b, miR-16 和 U6 在各组织的溶解曲线
Fig 2 The dissociation curve of miR-15b, miR-16 and U6 in tissues
3.3 免疫组化检测 NF-κB (P65) 蛋白在各组织中表达和定位

NF-κB (P65) 亚单位免疫组化阳性产物位于胞核/胞质，呈棕褐色细颗粒状，结果：阴性对照组之胞核/胞质无棕黄染色（图 4D）。在正常脂肪组织标本中，NF-κB (P65) 蛋白主要定位于胞质，见少数核着色（图 4C）。30 例正常组织标本中胞核阳性表达率为 10%。而在宫颈癌旁组织与癌组织中，NF-κB (P65) 蛋白主要位于胞核，少部分位于胞质（见图 4A 、B）。30 例癌组织标本中核阳性表达率为 89%，30 例癌旁组织标本中核阳性表达率为 80%。癌组织中 NF-κB (P65) 吸光度 A 值为 0.431 ± 0.008，明显高于癌旁组的 0.283 ± 0.006 和正常组的 0.101 ± 0.002 （P < 0.05），癌旁组 NF-κB (P65) 吸光度 A 值也明显高于正常组织（P < 0.05）。

3 讨论

宫颈癌的发生已呈年轻化趋势，大量的分子研究认为是多基因改变而积累的结果。miRNA 作为原癌基因或者抑癌基因，在肿瘤的恶变机制中受表观遗传学的调控。由此，miRNA 在宫颈癌发生、发展中所起的作用受到了人们的关注。对 121 例宫颈癌患者的标本进行研究，发现 HPV 整合位点附近有 53 个 miRNA 基因，出现频率为 78.3%[7]，其中 25 个曾被报道出现在宫颈癌组织中，利用 miRNA 芯片结合 Nothernblot 技术检测 7 对年龄匹配的宫颈癌组织和正常宫颈组织中 455 个成熟 miRNA，结果显示 miR-15b、miR-16 在宫颈癌组织中高表达。

miR-15b 和 miR-16 在调控细胞生理活动的同时，也参与了引起疾病发生的多条信号通路。NF-κB 信号通路就在其中。NF-κB 蛋白家族由两个亚家族组成：Rel 蛋白和 NF-κB 蛋白，其中研究较多的是 NF-κB (P65) 蛋白，它是基因转录的激活物[2]。在宫颈癌组织和细胞系中，均存在 NF-κB 高表达与激活，NF-κB 通路在宫颈癌中起到抗凋亡和保护细胞的作用[7]。同时，NF-κB 通路的激活参与调控 miRNA 的表达。研究发现，受到棒状杆菌感染的胆管上皮细胞通过激活 NF-κB 信号通路来调节 miRNA 的表达，其中 miR-15b 和 miR-16 的高表达与其结合在 NF-κB 的潜在启动子区域有关[8]。在胃癌细胞中利用 NF-κB 抑制剂下调 NF-κB 表达的同时，miR-16 的表达也降低了[9]，说明 NF-κB 靶向调控 miR-16，miR-16 通过反馈环调节 NF-κB 的非经典途径。芯片分析也证明了 NF-κB 的结合区位于 miR-16 的启动子上。

NF-κB 信号通路在宫颈癌组织的研究较多，而癌旁组织作为肿瘤转移侵袭的微环境却研究较少。本实验 miR-15b 和 miR-16 在癌旁组织中高表达，癌旁组织的 NF-κB 通路处于活化状态，考虑 miR-15b 和 miR-16 作为 NF-κB 调控的下游基因，在癌旁组织中的高表达与 NF-κB 通路的活化有关。因此
NF-κB信号通路是宫颈癌发生的早期分子事件,推测NF-κB抑制剂的应用将对肿瘤的浸润转移提供新的预防治疗手段,抑制NF-κB活性的治疗手段也可作为当前治疗的补充[10]。本实验仅局限于动物模型,临床应用的推广还需收集不同分期的临床样本,根据其分化程度、病理分级、淋巴结有无转移的不同,进一步验证NF-κB信号通路对宫颈癌早期发生发展的影响及可提供的预防治疗手段。

参考文献:

糖尿病可能增加听力损害风险

据英国《BBC新闻》(BBC NEWS)2012-12-04报道,糖尿病已知会增加肾脏与心血管病变风险,以及造成神经损害与视力丧失,如今日本新研究进一步发现,糖尿病患者听力受损的风险是非病患族群的3.5倍。

研究人员检视过去相关研究发现,较年轻的糖尿病患者听力损伤的风险甚至高于较年长患者,其原因有待理清。

研究人员发表在《临床内分泌与代谢期刊》(The Journal of Clinical Endocrinology and Metabolism)。

领导研究的新潟大学医学院(Niigata University Faculty of Medicine)堀川千嘉(Chiika Horikawa)与研究团队在报告中写道:“目前综合分析显示,无论年龄如何,糖尿病患者听力损伤的比例高于非病患者。”

这并非研究人员首次发现糖尿病与听力损伤的关联性。美国国家卫生研究院(NIH)研究人员在2008年研究11 000多人时发现类似情形,也就是糖尿病患者听力损伤风险是非病患者的2倍。

研究者认为是糖尿病患者体内的高血糖浓度损害耳朵内血管,导致听力受损。