F-ideals and f-graphs

Jin Guo, Tongsuo Wu & Qiong Liu

To cite this article: Jin Guo, Tongsuo Wu & Qiong Liu (2017) F-ideals and f-graphs, Communications in Algebra, 45:8, 3207-3220, DOI: 10.1080/00927872.2016.1236119

To link to this article: http://dx.doi.org/10.1080/00927872.2016.1236119

Accepted author version posted online: 18 Oct 2016.
Published online: 18 Oct 2016.

Submit your article to this journal

Article views: 36

View related articles

View Crossmark data
F-ideals and f-graphs

Jin Guoa, Tongsuo Wub, and Qiong Liuc

aCollege of Information Science and Technology, Hainan University, Haikou, China; bDepartment of Mathematics, Shanghai Jiaotong University, Shanghai, China; cDepartment of Mathematics, Shanghai University of Electric Power, Shanghai, China

\textbf{ABSTRACT}

For a field K, a square-free monomial ideal I of $K[x_1, \ldots, x_n]$ is called an f-ideal if both its facet complex and Stanley-Reisner complex have the same f-vector. In this paper, we introduce a combinatorial concept (LU-set) and use it to characterize an (n, d)th f-ideal, whose minimal monomial generating set consists of some monomials of a common degree d from $K[x_1, \ldots, x_n]$. We classify all $(n, 2)$th f-ideals, thus list all f-graphs whose edge ideals are exactly the $(n, 2)$th f-ideals. Furthermore, we show that all f-graphs are Cohen-Macaulay.

\textbf{1. Introduction}

Throughout the paper, for a positive integer n, let $[n] = \{1, 2, \ldots, n\}$. Let Δ be a simplicial complex with vertex set $[n]$. Recall that each element of Δ is a subset of $[n]$, and is called a face. The maximal faces are called facets of Δ. A vertex cover of Δ is a subset A of $[n]$, with the property that for every facet F_i there is a vertex $v \in A$ such that $v \in F_i$. A minimal vertex cover of Δ is a subset A of $[n]$ such that A is a vertex cover, and no proper subset of A is a vertex cover for Δ. Recall that a simplicial complex Δ is unmixed if all of its minimal vertex covers have the same cardinality. Let Δ_i be the set of faces of Δ with dimension $i - 1$, i.e., $\Delta_i = \{F \in \Delta \mid |F| = i\}$. For a simplicial complex Δ having dimension d, its f-vector is a $(d + 1)$-tuple, defined as $f(\Delta) = (f_0, f_1, \ldots, f_d)$, where $f_i = |\Delta_{i+1}|$ for $i = 0, \ldots, d$. In general, for a set A, let A_i be the set of the subsets of A with cardinality i, i.e., $A_i = \{B \mid B \subseteq A, |B| = i\}$.

Throughout, let $S = K[x_1, \ldots, x_n]$ be the polynomial ring in n indeterminants over a field K. For a monomial ideal I of S, let $G(I)$ be the minimal monomial generating set of I. If all monomials in $G(I)$ have the same degree d, then I is called an (n, d)th ideal. Denote by $sm(S)$ ($sm(I)$, respectively) the set of square-free monomials in S (in I, respectively). Clearly, there is a natural bijection between $sm(S)$ and 2^n, given by

\[\sigma : x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\}.\]

For other concepts and notations used without mention, one can refer to references [3, 6, 9, 13, 14].

Given a simplicial complex Δ, one can define a Stanley-Reisner ideal I_Δ and a facet ideal $I(\Delta)$ corresponding to Δ. Conversely, given a square-free monomial ideal I, it can be associated with either its facet complex or its Stanley-Reisner complex. Recall that the facet complex of I, denoted by $\delta_F(I)$, is generated by the facet set $\sigma(G(I))$, where $\sigma(G(I)) = \{\sigma(g) \mid g \in G(I)\}$. Recall that the Stanley-Reisner complex $\delta_N(I)$ of I (or alternatively, the non-face complex of I) is defined by $\delta_N(I) = \{\sigma(g) \mid g \in sm(S) \setminus sm(I)\}$, in which we set $\sigma(1) = \emptyset$. Note that the Stanley-Reisner ideal of $\delta_N(I)$ is I. The above correspondences construct a bridge between algebraic properties of ideals and combinatorial properties.
of simplicial complexes. In order to study algebraic properties such as linear resolutions of square-free monomial ideals, one usually takes advantage of the structures of simplicial complexes corresponding to the ideals, see references [5, 7, 10, 15] for further detail.

A square-free monomial ideal \(I \) is called an \(f \)-ideal, if both \(\delta_F(I) \) and \(\delta_N(I) \) have the same \(f \)-vector. Note that the \(f \)-vector of a complex \(\delta_N(I) \) is essential in the computation of the Hilbert series of \(S/I \), and the \(f \)-vector of \(\delta_F(I) \) is generally not easy to calculate. Since the complex \(\delta_F(I) \) corresponds to the ideal \(I \) directly, it is easier to calculate the \(f \)-vector of \(\delta_F(I) \). So, it is easy to calculate the Hilbert series and study other corresponding properties of \(S/I \), whenever \(I \) is an \(f \)-ideal.

Let us give a brief literature review on \(f \)-ideals and related topics. It seems that the original impetus for combining the simplicial complex \(\delta_F(I) \) with \(\delta_N(I) \) comes from Remark 2 of [7], while the formal definition of an \(f \)-ideal first appeared in [1]. The authors of [1] studied the properties of an \((n,2)\)-\(f \)-ideal \(I \), and presented an interesting characterization in terms of unmixedness of ideals together with two conditions on \(n \) and \(|G(I)| \). In [2], the authors gave an analogous characterization for unmixed \((n,d)\)-\(f \)-ideals when \(d \geq 3 \). It is worth mentioning that, only unmixed \((n,d)\)-\(f \)-ideals \((d \geq 3) \) were characterized in [2], while all \((n,2)\)-\(f \)-ideals were characterized in [1]. The reason may be that all of \((n,d)\)-\(f \)-ideals are not unmixed when \(d \geq 3 \), as Example 5.1 of the present paper shows. In order to describe all \((n,d)\)-\(f \)-ideals for \(d \geq 2 \), we introduce a new combinatorial concept called LU-set, see Theorem 2.3 for a complete characterization of \((n,d)\)-\(f \)-ideals and, Theorem 7.2 for a characterization of \(f \)-ideals in the general case (i.e., the case when the monomials in \(G(I) \) need not have the same degree).

Corresponding to \((n,2)\)-\(f \)-ideal, the authors of [12] introduced and studied \(f \)-graphs. Recall that a graph \(G \) is called an \(f \)-graph, if its edge ideal \(I(G) \) is an \(f \)-ideal. \(f \)-graphs were characterized in [12, Theorem 3.5], while a construction of two classes of \(f \)-graphs was shown in [12, Theorem 3.8].

Note that Theorem 3.5 provides an alternate combinatorial characterization for the \(f \)-ideals of degree 2. Furthermore, the authors also proved that the \(f \)-graphs constructed are Cohen-Macaulay. In the present paper, by giving a classification theorem of \(f \)-graphs (and, of all \((n,2)\)-\(f \)-ideals), we prove that all \(f \)-graphs are pure shellable and hence, Cohen-Macaulay, see Theorem 6.5 and Corollary 6.6 for detail.

In [8], some algorithms are provided for constructing \(f \)-ideals generated by homogeneous square-free monomials of degree \(d \), where \(d \geq 3 \), and more examples of \(f \)-ideals in the general case are constructed. In [11], a simplicial complex \(\Delta \) is said to be an \(f \)-simplicial complex if its facet ideal \(I_F(\Delta) \) is an \(f \)-ideal, and the authors discuss the problem of connectedness of \(f \)-simplicial pure complexes. Moreover, they give a complete characterization of connected and disconnected \(f \)-graphs (i.e., dimension 1 \(f \)-simplicial complexes) and give a classification of all the disconnected \(f \)-graphs.

In the following, we show some results and some immediate observations which are needed in the discussion of next section.

Recall that the degree of a monomial ideal \(I \) is the maximal degree of monomials in \(G(I) \). As a comparison, we have the following definition:

Definition 1.1. For a monomial ideal \(I \), the minimal degree of monomials in \(G(I) \) is called the lower degree of \(I \), denoted by \(\text{ldeg}(I) \).

Lemma 1.2 ([2, Lemma 3.6]). Let \(I \) be an \((n,d)\)-square-free monomial ideal. Then for each \(0 \leq i < d-1 \), \(\delta_F(I)_{i+1} \leq \delta_N(I)_{i+1} \) holds. In particular, \(f_i(\delta_F(I)) \leq f_i(\delta_N(I)) \) holds for each \(0 \leq i < d-1 \).

Lemma 1.3. Let \(S = K[x_1, \ldots, x_n] \) and let \(I \) be a square-free monomial ideal of \(S \) with lower degree \(\text{ldeg}(I) = k \). Then \(f_{i-1}(\delta_N(I)) = \binom{n}{i} \) holds for each \(0 < i < k \). Furthermore,

\[
 f_{i-1}(\delta_F(I)) = f_{i-1}(\delta_N(I)) = \binom{n}{i}
\]

holds for each \(0 < i < k \), if further \(I \) is an \(f \)-ideal.
Corollary 1.4 ([2, Lemma 3.7]). If I is an $(n, d)^{th}$ f-ideal, then

$$f_{i-1}(\delta F(I)) = f_{i-1}(\delta N(I)) = \binom{n}{i}$$

holds for each $0 < i < d$.

This paper is organized as follows: In Section 2, we give a combinatorial characterization of $(n, d)^{th}$ f-ideals. In the case $d = 2$, we prove the existence of an f-ideal, and give a classification theorem for the set of $(n, 2)^{th}$ f-ideals in Sections 3 and 4 respectively. In Section 5, we present a combinatorial proof that f-ideals are unmixed when $d = 2$. The Cohen-Macaulayness of f-graphs is proved in Section 6. Finally, in Section 7, we give a characterization of f-ideals in the general case.

2. LU-sets and $(n, d)^{th}$ f-ideals

In order to characterize f-ideals, we introduce LU-sets and their corresponding notations.

Let $S = K[x_1, \ldots, x_n]$, and let $A \subseteq sm(S)$. Set $\cup(A) = \{g \in A \mid g_i \geq 1 \leq i \leq n\}$, and $\cap(A) = \{h \mid h = g_i x_i \forall g \in A \text{ and } x_i \}$ with $x_i | g$. Denote inductively $\cup(i) = \cup(\cup^{i-1}(A))$, $\cap(i) = \cap(\cap^{i-1}(A))$. It is easy to see that each of $\cup^{\infty}(A)$ and $\cap^{\infty}(A)$ can be achieved in a finite number of steps.

Definition 2.1. Let $S = K[x_1, \ldots, x_n]$, and let $A \subseteq sm(S)_d$, where $1 < d < n$. A is called an $(n, d)^{th}$ L-set, if $\cap(A) = sm(S)_{d-1}$ holds. Dually, A is called an $(n, d)^{th}$ U-set, if $\cup(A) = sm(S)_{d+1}$ holds. If A is both an $(n, d)^{th}$ L-set and a U-set, then A is called an $(n, d)^{th}$ LU-set, or alternatively, an LU-subset of $sm(S)_d$. For a given pair of numbers (n, d), the smallest number among cardinalities of $(n, d)^{th}$ LU-sets is called the $(n, d)^{th}$ LU-number, and is denoted by $N_{n,d}$.

If there is no confusion, an $(n, d)^{th}$ LU-set would be abbreviated as an LU-set. This applies also to an $(n, d)^{th}$ L-set (U-set, respectively).

Example 2.2. Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$:

$A = \{x_1 x_2, x_1 x_3, x_1 x_4\}$, $B = \{x_1 x_2, x_1 x_3, x_2 x_3\}$, $C = \{x_1 x_2, x_3 x_4\}$.

It is direct to check that A is an L-set, B is a U-set, C is an LU-set. Note that $x_2 x_3 x_4 \not\in \cap(A)$, so A is not a U-set. On the other hand, $x_4 \not\in \cap(B)$ implies that B is not an L-set.

With the aid of the bijection $\sigma : sm(S) \to 2^{[n]}$, we can define an (L-subset or U-subset, respectively) LU-subset of $2^{[n]}$. For example, a subset A of $[n]_d$ is called an LU-set, if $\sigma^{-1}(A)$ is an LU-subset of $sm(S)_d$.

The following result classifies $(n, d)^{th}$ f-ideals in terms of LU-sets.

Theorem 2.3. Let $S = K[x_1, \ldots, x_n]$, and let I be an $(n, d)^{th}$ square-free monomial ideal of S with the minimal generating set $G(I)$. Then I is an f-ideal if and only if, the set $G(I)$ is an LU-set and $|G(I)| = \frac{1}{2} \binom{n}{d}$ holds true.

Proof. For the necessity part, if I is an $(n, d)^{th}$ f-ideal, then by definition, $\delta F(I)$ and $\delta N(I)$ have the same f-vector. In particular, $\dim(\delta N(I)) = \dim(\delta F(I)) = d - 1$. Since I is the Stanley-Reisner ideal of $\delta N(I)$, $sm(S)_{d+1} \subseteq sm(S)$ holds. Note that I is an $(n, d)^{th}$ ideal, it follows that $G(I)$ is a U-set. Furthermore, by Corollary 1.4, $f_{d-2}(\delta F(I)) = |sm(S)_{d-1}| = \binom{d-1}{2}$. Note that every facet of $\delta F(I)$ has dimension $d - 1$, hence $G(I)$ is an L-set. Finally, it follows from $|\delta F(I)_d| = |\delta N(I)_d|$ that $\binom{n}{d}$ is even, and that $|G(I)| = \frac{1}{2} \binom{n}{d}$ holds true.
Conversely, for the sufficiency part, assume that $G(I)$ is an $(n,d)^{th}$ LU-set and $|G(I)| = \frac{1}{2}\binom{n}{d}$. First, we claim that the simplicial complex $\delta_N(I)$ is identical with the complex Δ generated by $D = E \cup [n]_{d-1}$, where $E = [n]_d \setminus \sigma(G(I))$. In fact, the Stanley-Reisner ideal I_Δ of Δ clearly contains all the monomials in $G(I)$ and thus $I \subseteq I_\Delta$ holds. Note further that $G(I)$ is a U-set, it follows that $I = I_\Delta$. On the other hand, since $G(I)$ is an L-set, each set in $[n]_{d-1}$ is a face of $\delta_F(I)$. Hence

\[f_{i-1}(\delta_F(I)) = f_{i-1}(\delta_N(I)) = \binom{n}{i} \]

holds for each $0 < i < d$. Note that $|G(I)| = \frac{1}{2}\binom{n}{d}$, so

\[f_{d-1}(\delta_F(I)) = f_{d-1}(\delta_N(I)) = \frac{1}{2}\binom{n}{d}. \]

Thus $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector, and hence I is an f-ideal. \hfill\Box

3. Existence of $(n, 2)^{th}$ f-ideals and the LU-number $N_{(n, 2)}$

All graphs in the paper are assumed to be undirected and simple. For a graph G, the vertex set of G is denoted by $V(G)$ and the edge set of G is denoted by $E(G)$. Let v be a vertex in $V(G)$. The degree of v is the number of edges incident to v, denoted by $d(v)$. A clique C of G is a subset of $V(G)$ such that every two distinct vertices in C are adjacent. A maximum clique of G is a clique such that there is no clique of G with more vertices. The clique number of G is the number of vertices in a maximum clique of G, and is denoted by $\omega(G)$. Let $G = \langle x_1, \ldots, x_n \rangle$, and let τ be the bijection sending a subset A of $sm(S)_2$ to a graph T whose vertices are v_1, \ldots, v_n, with $v_iv_j \in E(T)$ if and only if $x_ix_j \in A$. In other words, the edge ideal of T is the ideal generated by monomials in A. In the following, a question about f-ideals will be translated into a corresponding question in graph theory, by taking advantage of the bijection τ.

Proposition 3.1. Let $A \subseteq sm(S)_2$. Then

1. A is a U-set if and only if $\omega(\tau(A)) \leq 2$ holds, where $\overline{\tau(A)}$ is the complement graph of $\tau(A)$.
2. A is an L-set if and only if for each $i \in [n]$, $d_{\overline{\tau(A)}}(v_i) < n - 1$ holds, where $d_{\overline{\tau(A)}}(v_i)$ is the vertex degree of v_i in the graph $\overline{\tau(A)}$.

Proof.

1. For the sufficiency part, assume to the contrary that A is not a U-set. Then there exists a subset $\{i,j,t\} \subseteq [n]$ such that none of x_ix_j, x_ix_t, x_jx_t are in A, hence $\{v Iv_j, v_i v_t, v_jv_t\} \cap E(\tau(A)) = \emptyset$ holds, thus $\{v_i, v_j, v_t\}$ is a clique in $\overline{\tau(A)}$, contradicting the assumption $\omega(\overline{\tau(A)}) \leq 2$. By reversing this argument, the necessity part follows.

2. It is not hard to see that, A is an L-set if and only if there exists no vertex $v_i \in V(\tau(A))$ with $d_{\tau(A)}(v_i) = 0$, and the latter holds if and only if for each $i \in [n]$, $d_{\overline{\tau(A)}}(v_i) < n - 1$ holds in the graph $\overline{\tau(A)}$. This completes the proof. \hfill\Box

For a subset B of $[n]$ with $1 < |B| < n - 1$, let \overline{B} be the complement of B in $[n]$ and let

\[W_B = \{x_ix_j \mid i, j \in B \text{ or } i, j \in \overline{B} \} \]

be a subset of $sm(S)_2$. Then $W_B = W_{\overline{B}}$ holds clearly, and W_B is an $(n, 2)^{th}$ LU-set. For an $(n, 2)^{th}$ f-ideal I, if there exists $B \subseteq [n]$ such that $W_B \subseteq G(I)$, then I is called an $(n, 2)^{th}$ f-ideal of r type, where $r = \min(|B|, |\overline{B}|)$. The set of all f-ideals of r type is denoted by W_r.

In the following, two symbols, say \(V(n,d) \) and \(U(n,d) \), are needed for clarity. For an \((n,d)\)th \(f \)-ideal \(I \), if there exists an \((n,d)\)th \(f \)-ideals \(A \subseteq G(I) \) such that \(|A| = N_{(n,d)}\) holds, then \(I \) is called an \((n,d)\)th basic \(f \)-ideal. The set of all \((n,d)\)th basic \(f \)-ideals is denoted by \(U(n,d) \). On the other hand, the set of all \((n,d)\)th \(f \)-ideals is denoted by \(V(n,d) \). By Theorem 2.3, in order to study the structure of \(V(n,d) \), it is necessary to investigate \(N_{(n,2)} \). It is easy to see that \(N_{(3,2)} = 2 \) and \(V(3,2) = \emptyset \). We assume \(n \geq 4 \) in the following.

In graph theory, Turán’s theorem is an important result on the number of edges in a \(K_{r+1} \)-free simple graph, where a \(K_{r+1} \)-free graph is a graph which contains no clique \(K_{r+1} \) as a subgraph. Recall that a Turán graph, denoted by \(T_{r,n} \), is a complete \(r \)-partite graph on \(n \) vertices whose parts are of equal or almost equal sizes (that is, \(\lceil \frac{n}{r} \rceil \) or \(\lceil \frac{n}{r} \rceil \)). See [4] for detail.

Proposition 3.2 (Turán’s Theorem). Let \(G \) be a simple graph with \(n \) vertices, such that \(G \) is \(K_{r+1} \)-free, where \(r \geq 1 \). Then \(|E(G)| \leq |E(T_{r,n})|\), with equality if and only if \(G \cong T_{r,n} \). In particular, while \(r = 2 \), if \(G \) is an \(n \)-vertex triangle-free graph, then \(|E(G)| \leq \lfloor \frac{n^2}{4} \rfloor \), with equality if and only if \(G \cong K_{\lfloor \frac{n}{2} \rfloor,\lceil \frac{n}{2} \rceil} \), where \(K_{\lfloor \frac{n}{2} \rfloor,\lceil \frac{n}{2} \rceil} \) is a complete bipartite graph with two parts containing \(\lfloor \frac{n}{2} \rfloor \) and \(\lceil \frac{n}{2} \rceil \) vertices respectively.

Lemma 3.3. Let \(k \) be a positive integer, and let \(n \geq 4 \). Then the LU-number \(N_{(n,2)} \) is given by the following rules:

\[
N_{(n,2)} = \begin{cases}
 k^2 - k, & \text{if } n = 2k; \\
 k^2, & \text{if } n = 2k + 1.
\end{cases}
\]

Proof. Let \(A \) be an \((n,2)\)th LU-set. By Proposition 3.1, \(\omega(\tau(A)) \leq 2 \) holds. Now consider the following two possible cases:

Case 1: \(n = 2k \). On one hand, it follows from Proposition 3.2 that \(\tau(A) \) has no more than \(k^2 \) edges, which implies that the cardinality of \(A \) is not less than \(\left(\frac{k}{2} \right)^2 - k^2 = k^2 - k \). On the other hand, let \(B \) be a subset of \([n]\) with \(k \) elements. Then it is easy to see that \(W_B \) contains \(\left(\frac{k}{2} \right)^2 + \left(\frac{k}{2} \right) = k^2 - k \) elements, hence \(N_{(n,2)} = k^2 - k \) holds.

Case 2: \(n = 2k + 1 \). By a similar discussion as above, one can see that \(N_{(n,2)} = k^2 \) holds. We omit the detail here.

Note that \(2 \nmid \left(\frac{n}{2} \right) \) holds whenever \(n = 4k + 2 \) or \(n = 4k + 3 \). Thus, in these cases, \(V(n,2) = \emptyset \). So, it is only necessary to consider the case when \(n = 4k \) or \(n = 4k + 1 \). Now we are ready to settle the existence of \((n,2)\)th \(f \)-ideals:

Proposition 3.4. \(V(n,2) \neq \emptyset \) if and only if \(n = 4k \) or \(n = 4k + 1 \) for some positive integer \(k \).

Proof. The necessity part is clear. For the sufficiency part, it suffices to show that the \((n,2)\)th LU-number is not greater than \(\frac{1}{2} \left(\frac{n}{2} \right)^2 \) in the two cases respectively. If \(n = 4k \), then by Lemma 3.3, \(N_{(n,2)} = 4k^2 - 2k \) and \(\frac{1}{2} \left(\frac{n}{2} \right)^2 = 4k^2 - k \), so \(N_{(n,2)} < \frac{1}{2} \left(\frac{n}{2} \right)^2 \). If \(n = 4k + 1 \), then \(N_{(n,2)} = 4k^2 + 2k \) and \(\frac{1}{2} \left(\frac{n}{2} \right)^2 = 4k^2 + k \), so we also have \(N_{(n,2)} < \frac{1}{2} \left(\frac{n}{2} \right)^2 \).

Remark 3.5. By Proposition 3.2 and Lemma 3.3, the only way to construct an \((n,2)\)th basic \(f \)-ideal is by the following steps. First, decompose the set \([n]\) into a disjoint union of two subsets \(B \) and \(\overline{B} \) uniformly, namely, \(|B| - |\overline{B}| \leq 1 \). Then set \(W_B = \{x \in \{i,j\} | i,j \in B, \text{ or } i,j \in \overline{B}\} \). It follows from Lemma 3.3 and Proposition 3.4 that \(W_B \) is a LU-set with cardinality \(N_{(n,2)} \), which is less than \(\frac{1}{2} \left(\frac{n}{2} \right)^2 \). Let \(D \) be a subset of \(sm(S) \backslash W_B \) with \(\frac{1}{2} \left(\frac{n}{2} \right)^2 - N_{(n,2)} \) monomials. It is easy to see that \(W_B \cup D \) is an \((n,2)\)th LU-set with \(\frac{1}{2} \left(\frac{n}{2} \right)^2 \).
monomials. By Theorem 2.3, the ideal \(I \) generated by \(W_B \cup D \) is a basic \(f \)-ideal. It also follows from the above discussion that \(U(n, 2) = W_{2k} \) when \(n = 4k \) or \(n = 4k + 1 \) for some positive integer \(k \), where \(W_{2k} \) is the set of \(f \)-ideals of \(2k \) type.

4. Structure of \(V(n, 2) \)

We begin with a counting formula for the cardinality of \(U(n, 2) \), where \(U(n, 2) \) is the set of \((n, 2)^{th}\) basic \(f \)-ideals:

Proposition 4.1. If \(k \) is a positive integer, then

\[
|U(n, 2)| = \begin{cases}
\frac{1}{2} \binom{4k}{2k} \binom{4k^2}{k}, & \text{if } n = 4k; \\
\binom{4k + 1}{2k} \binom{4k^2 + 2k}{k}, & \text{if } n = 4k + 1; \\
0, & \text{otherwise}
\end{cases}
\] (2)

Proof. We only prove the case when \(n = 4k \), and the other cases are similar thus their verifications will be omitted. Assume \(I \in U(n, 2) \), where \(n = 4k \). Since \(U(n, 2) = W_{2k} \), there exists a subset \(B \subseteq [n] \) with \(|B| = 2k \), such that \(W_B \subseteq G(I) \) holds. We claim that such a \(W_B \) is unique, i.e., if there exists another \(B_1 \subseteq [n] \) with \(|B_1| = 2k \) such that \(W_{B_1} \subseteq G(I) \), then \(\{B, \overline{B}\} = \{B_1, \overline{B_1}\} \) holds. In fact, note that both \(|G(I)| = \frac{1}{2} \binom{4k}{2} = 4k^2 - k \) and \(|W_B| = 2 \binom{2k}{k} = 4k^2 - 2k \) hold, hence there are at most \(k \) monomials in \(G(I) \setminus W_B \). Now assume to the contrary that \(\{B, \overline{B}\} \neq \{B_1, \overline{B_1}\} \) holds, and further assume without loss of generality that \(\{1, 2\} \subseteq B, 1 \in B_1 \) and \(2 \notin B_1 \) hold. Note that for each \(j \notin B \), either \(x_j \in W_{B_1} \) or \(x_2x_j \in W_{B_1} \), hence \(W_{B_1} \) contains at least \(2k \) monomials in \(G(I) \setminus W_B \). Note that \(|G(I) \setminus W_B| \leq k \) hold, a contradiction. The contradiction shows the uniqueness of the set \(W_B \).

In order to count the cardinality of \(U(n, 2) \), we need to first choose a \(2k \) set \(B \) randomly, then choose \(k \) monomials of sm\((S)_{2k} \setminus W_B \) arbitrarily. Note that \(W_B = W_{\overline{B}} \) holds, thus \(|U(n, 2)| = \frac{1}{2} \binom{4k}{2k} \binom{4k^2}{k} - \frac{1}{2} \binom{4k}{2k} \binom{4k^2}{k} \) also holds. This completes the proof. \(\square \)

In the rest of this section, we will consider a possible decomposition of \(V(n, 2) \) into a disjoint union of the aforementioned \(W_r \).

The following example shows that there exist \((n, 2)^{th}\) \(f \)-ideals which are not of \(r \) type for any \(r \).

Example 4.2. Let \(S = K[x_1, x_2, x_3, x_4, x_5] \). It is direct to check that

\[I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_3 \rangle \]

is an \(f \)-ideal, but \(I \) is not of \(r \) type for any \(r \).

Note that if \(T \) is a cycle with 5 vertices, so is \(\overline{T} \). The above example shows that if \(T \) is a cycle with 5 vertices, then the ideal generated by \(\tau^{-1}(\overline{T}) \) is an \(f \)-ideal. Such a class of \(f \)-ideals will be denoted by \(C_5 \), which consists of 12 \(f \)-ideals. In fact, by the proof of the following Theorem 4.5, this is the only class of \(f \)-ideals which is not of any \(r \) type.

The following proposition is easy to check, so the proof is omitted.

Proposition 4.3. Let \(2 \leq r \leq \lfloor n/2 \rfloor \). If \(I \) is an \((n, 2)^{th}\) \(f \)-ideal, then \(I \) is of \(r \) type if and only if \(\tau(G(I)) \) is a bipartite graph with two partite sets which contain \(r \) and \(n - r \) vertices respectively.
By Proposition 3.1 and Proposition 4.3, the following lemma is clear.

Lemma 4.4. I is an $(n, 2)^{th}$ f-ideal which is not of r type for any r, if and only if $H = \tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

1. For each $i \in [n]$, $d_H(v_i) < n - 1$.
2. $\omega(H) = 2$.
3. $|E(H)| = \frac{1}{2}\binom{n}{2}$.
4. H is not a bipartite graph.

Note that an $(n, 2)^{th}$ square-free monomial ideal I is an f-ideal if and only if $H = \tau(G(I))$ satisfies conditions (1), (2) and (3) above.

By considering whether there is a graph satisfying the FC, we find an amazing result as the following theorem shows.

Theorem 4.5 (Classification Theorem). Let $V(n, 2)$ be the set of $(n, 2)^{th}$ f-ideals for $n \geq 4$. Then $V(5, 2) = W_2 \cup C_5$, and $V(n, 2) = \bigcup_{r=2}^{\lfloor n/2 \rfloor} W_r$ for $n \neq 5$, in which $W_i \cap W_j = \emptyset$ while $i \neq j$.

Proof. Note that $V(n, 2) = \bigcup_{r=2}^{\lfloor n/2 \rfloor} W_r$ holds true, if and only if each f-ideal is of r type for some r; and the latter holds if and only if, there is no graph satisfying the FC. We will show that a graph cannot satisfy condition (3) if it satisfies conditions (2) and (4), except for the case $n = 5$.

Assume that T is a graph satisfying conditions (2) and (4). Note that a graph is bipartite if and only if the graph contains no odd cycle. Since T is not a bipartite graph, there exists at least one odd cycle in T. Assume that D is a minimal odd cycle of T, with $|V(D)| = 2i + 1$. Note that $\omega(T) = 2$, so $i \geq 2$. Denote by $|E(D)|$ and $|E(T \setminus D)|$ the number of edges of the subgraphs induced on D and $T \setminus D$ respectively, and denote by $|E(D, T \setminus D)|$ the number of edges, each of which has end vertices in D and $T \setminus D$ respectively. It is clear that

$$|E(T)| = |E(D)| + |E(T \setminus D)| + |E(D, T \setminus D)|$$

holds. Note that $|E(D)| = 2i + 1$, since D is a minimal odd cycle. Since there exists no triangles in T, it is not hard to see that

$$|E(D, T \setminus D)| \leq (n - 2i - 1)i.$$

We will discuss $|E(T \setminus D)|$ in the following two subcases:

If $n = 2k$ for some positive k, then $|V(T \setminus D)| = 2k - 2i - 1$ holds. It follows from Proposition 3.2 that $|E(T \setminus D)| \leq (k - i)(k - i - 1)$ holds, hence

$$|E(T)| = |E(D)| + |E(D, T \setminus D)| + |E(T \setminus D)|$$

$$\leq (2i + 1) + (2k - 2i - 1)i + (k - i)(k - i - 1) = k^2 - k - i^2 + 2i + 1.$$

Note that $\frac{1}{2}\binom{n}{2} = k^2 - k/2$, thus

$$\frac{1}{2}\binom{n}{2} - |E(T)| \geq k/2 + i^2 - 2i - 1 = k/2 + (i - 1)^2 - 2$$

holds. Since $i \geq 2$ and $2k > 2i + 1$, $\frac{1}{2}\binom{n}{2} - |E(T)| > 0$ holds. This shows that there is no graph satisfying FC when $n = 2k$.

If $n = 2k + 1$, then $|V(T \setminus D)| = 2k - 2i$ holds. Again by Proposition 3.2, $|E(T \setminus D)| \leq (k - i)^2$ holds, hence we have

$$|E(T)| = |E(D)| + |E(D, T \setminus D)| + |E(T \setminus D)|$$

$$\leq (2i + 1) + (2k - 2i)i + (k - i)^2 = k^2 - i^2 + 2i + 1.$$
Note that \(\frac{1}{2} \binom{n}{2} = k^2 + k/2 \), thus
\[
\frac{1}{2} \binom{n}{2} - |E(T)| \geq k/2 + i^2 - 2i - 1 = k/2 + (i - 1)^2 - 2
\]
holds true. Then we have \(\frac{1}{2} \binom{n}{2} - |E(T)| \geq 0 \), since \(i \geq 2 \) and \(k \geq i \) hold true by assumption. Note further that the equality \(\frac{1}{2} \binom{n}{2} = |E(T)| \) holds true if and only if \(k = i = 2 \). Thus in this case, there is no graph satisfying FC except \(n = 5 \). Furthermore, the unique exceptions are the f-ideals in \(C_5 \). This completes the proof.

In order to explain the Classification Theorem more precisely, we need the following proposition.

Proposition 4.6.

1. If \(n = 4k \) for some positive integer \(k \geq 2 \), then \(W_{2k-i} \neq \emptyset \) if and only if \(0 \leq i \leq \sqrt{k} \).
2. If \(n = 4k + 1 \), then \(W_{2k-i} \neq \emptyset \) if and only if \(0 \leq i \leq \frac{\sqrt{1+4k}-1}{2} \).

Proof.

1. Note that \(W_{2k-i} \neq \emptyset \) if and only if \(\binom{2k-i}{2} + \binom{2k+i}{2} \leq \frac{1}{2} \binom{4k}{2} \) and \(2k - i > 1 \) hold. By direct calculation, the latter holds if and only if \(0 \leq i \leq \sqrt{k} \).

2. It is similar to (1) to check.

The following refines Theorem 4.5:

Theorem 4.7. Let \(n \geq 4 \), and let \(k \) be a positive integer. Then the following equalities hold true:

\[
V(n, 2) = \begin{cases}
 \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}, & \text{if } n = 4k (k \neq 1); \\
 W_2, & \text{if } n = 4; \\
 \bigcup_{0 \leq i \leq \frac{\sqrt{1+4k}-1}{2}} W_{2k-i}, & \text{if } n = 4k + 1 (k \neq 1); \\
 W_2 \cup C_5, & \text{if } n = 5; \\
 \emptyset, & \text{if } n = 4k + 2 \text{ or } n = 4k + 3.
\end{cases}
\]

Remark 4.8. By Theorem 4.7, one can construct any \((n, 2)^{th}\) f-ideal for \(n \geq 4 \). In the following, we present an algorithm for the construction of an \((n, 2)^{th}\) f-ideal when \(n = 4k (k \neq 1) \). The other cases are similar to construct.

1. Choose a nonempty subset \(B \subseteq [n] \), such that \(|B| = 2k - i \) with \(i \leq \sqrt{k} \);
2. Let \(t = k - i^2 \), and choose a subset \(E_t \subseteq sm(S)_2 \setminus W_B \) such that \(|E_t| = t \);
3. Let \(I \) be the ideal with the minimal generating set \(G(I) = W_B \cup E_t \). It follows from the proof of Proposition 4.6 that \(|G(I)| = \frac{1}{2} \binom{4}{2} \). Since \(W_B \) is an \((n, 2)^{th}\) LU-set, by Theorem 2.3, \(I \) is an \((n, 2)^{th}\) f-ideal.

The proof of the following proposition is similar to Proposition 4.1, so will be omitted.

Proposition 4.9. Let \(i, j \in [\lfloor n/2 \rfloor] \). Then the following hold:

1. If \(i \neq j \), then \(W_i \cap W_j = \emptyset \);
2. If \(I \in W_i \), then there exists a unique \(W_B \), such that \(|B| = i \) and \(W_B \subseteq G(I) \).
By Theorem 4.7 and Proposition 4.9, the following proposition is direct to check, so we omit the proof.

Proposition 4.10. Let \(n \geq 4 \), and let \(k \) be a positive integer. Then the following formula holds:

\[
|V(n, 2)| = \begin{cases}
\frac{1}{2} \left(\frac{4k}{2k} \right) \binom{4k^2}{k} + \sum_{1 \leq i \leq \sqrt{k}} \binom{4k - i}{k - i}^2, & \text{if } n = 4k(k \neq 1); \\
12, & \text{if } n = 4; \\
\sum_{0 \leq i \leq \sqrt{k} + k - 1} \binom{4k + 1}{2k - i} \binom{4k^2 + 2k - i}{k - i}^2, & \text{if } n = 4k + 1(k \neq 1); \\
72, & \text{if } n = 5; \\
0, & \text{if } n = 4k + 2 \text{ or } n = 4k + 3.
\end{cases}
\]

(4)

The structure of \(V(n, 2) \) is now completely characterized. However, a complete characterization of \(V(n, d) \) for \(d > 2 \) is still open.

5. **Unmixed f-ideals**

It is known that Cohen-Macaulay property is very important in commutative algebra. In [7], Faridi proved that a Cohen-Macaulay complex is an unmixed complex. Recall that an ideal \(I \) is called *unmixed*, if \(\text{codim}(P) = \text{codim}(I) \) holds for all prime ideals \(P \) minimal over \(I \). Comparing the definition of unmixed complex with unmixed ideal, it is not hard to see that a square-free monomial ideal is an unmixed ideal if and only if its facet complex is an unmixed complex. So, it is valuable to study the \(f \)-ideals which are unmixed. Recall also the following famous Unmixed Theorem: If \(I \) is generated by \(r \) elements and \(\text{codim}(I) = r \), then \(I \) is unmixed (see, e.g., [6, Corollary 18.14]).

The following example shows that an \(f \)-ideal need not to be unmixed.

Example 5.1. Let \(S = K[x_1, x_2, x_3, x_4, x_5] \), and let

\[I = \langle x_1x_2x_3, x_1x_2x_4, x_1x_2x_5, x_3x_4x_5, x_2x_3x_4 \rangle. \]

It is not hard to check that \(G(I) \) is an LU-set and \(|G(I)| = 5 = \frac{1}{2}(\frac{5}{2}) \), which satisfies the condition of Theorem 2.3. Hence \(I \) is an \(f \)-ideal. But the standard primary decomposition of \(I \) is \(I = \langle x_2, x_3 \rangle \cap \langle x_2, x_4 \rangle \cap \langle x_1, x_4 \rangle \cap \langle x_1, x_3 \rangle \cap \langle x_3, x_4, x_5 \rangle \), which shows that \(I \) is not unmixed.

However, when using the formulae of section 3 to consider \((n, 2)^{th} f\)-ideals, we rediscover the following surprising property, which constitutes the main part of [1, Theorem 3.5]. Note that our approach is combinatoric, and is quite different from the proof of [1, Theorem 3.5].

Proposition 5.2 ([1, Theorem 3.5]). Let \(I \) be an \((n, 2)^{th} square-free monomial ideal. If \(I \) is an \(f \)-ideal, then \(I \) is unmixed.

Proof. Since \(I \) is an \((n, 2)^{th} f\)-ideal, \(\delta_N(I) \) is 1-dimensional. Assume on the contrary that \(I \) is not unmixed. By Corollary 1.11 of [7], \(\delta_N(I) \) is not pure. Hence there exists some \(i \in [n] \), such that \(\{i\} \) is a facet of \(\delta_N(I) \). Assume without loss of generality that \{\(n \)\} is a facet of \(\delta_N(I) \). Then it is easy to see that each of \{\(1, n \), \(2, n \), \ldots \}, \{\(n - 1, n \)\} is a facet of \(\delta_P(I) \), hence \(G_1 = \{x_1x_n, x_2x_n, \ldots , x_{n-1}x_n\} \subseteq G(I) \).
Furthermore, since $x_{i_1}x_{i_2}x_{i_3} \in \cup(G(I))$ for each $\{i_1, i_2, i_3\} \subseteq [n-1]$, $G(I)$ contains at least another $(n-1, 2)^{th}$ U-set, denoted by G_2. Clearly, $|G(I)| \geq |G_1| + |G_2|$.

Now that I is an f-ideal, by Proposition 3.4, $n = 4k$ or $n = 4k + 1$ holds for some positive integer k. In the following, we will make use of the formula in Lemma 3.3 to estimate the cardinality of $G(I)$ in the two cases respectively.

If $n = 4k$, then $$|G(I)| \geq |G_1| + |G_2| \geq (n - 1) + N_{(n-1,2)} = (4k - 1) + (2k - 1)^2 = 4k^2,$$
and $\frac{1}{2}\binom{2}{2} = 4k^2 - k$, so $|G(I)| > \frac{1}{2}\binom{2}{2}$. In the case, there is a contradiction to Theorem 2.3.

If $n = 4k + 1$, then $$|G(I)| \geq |G_1| + |G_2| \geq (n - 1) + N_{(n-1,2)} = 4k + (4k^2 - 2k) = 4k^2 + 2k,$$
and $\frac{1}{2}\binom{2}{2} = 4k^2 + k$, so $|G(I)| > \frac{1}{2}\binom{2}{2}$, another contradiction.

This completes the proof. ☐

It is known that a square-free monomial ideal I is unmixed, if and only if $\delta_N(I)$ is a pure simplicial complex [7]. So, we have the following proposition:

Proposition 5.3. Let $S = K[x_1, \ldots, x_n]$. If I is an (n, d)th f-ideal, then I is unmixed if and only if $sm(S)_{d} \setminus G(I)$ is an L-set.

Proof. Note that if I is an (n, d)th f-ideal, then the equation $\delta_N(I)_{d} = \sigma(sm(S)_{d} \setminus G(I))$ holds. By Corollary 1.4, $\sigma(sm(S)_{d-1}) \subseteq \delta_N(I)$. Note that $\delta_N(I)$ is pure if and only if $\delta_N(I)_{d}$ contains all the facets of $\delta_N(I)$, and the latter holds if and only if $sm(S)_{d} \setminus G(I)$ is an L-set. This completes the proof. ☐

6. The Cohen-Macaulayness of f-gra

In [12], a graph H is called an f-graph, if its edge ideal $I(H)$ is an f-ideal. The Cohen-Macaulayness of several classes of f-graphs is studied in [12]. In this section, we will show that all f-graphs are Cohen-Macaulay.

For a graph H, there is a natural way to treat it as a simplicial complex: a vertex of H is a face with dimension 0, an edge of H is a face with dimension 1.

Lemma 6.1. Let H be an f-graph. Then $\delta_N(I(H)) = \bar{H}$.

Proof. It is known that the Stanley-Reisner complex of $I(H)$ is the clique complex of \bar{H}. In order to show that the clique complex of \bar{H} equals to \bar{H}, it is sufficient to show that there is not any triangle in \bar{H}, which is clearly true by part 4 of the present paper. ☐

For some positive integer r, the set of f-graphs whose edge ideals are f-ideals in W_r is denoted by W'_r, and the set of graphs which are cycles with 5 vertices is denoted still by C_5. Note that for an $(n, 2)^{th}$ f-ideal I, the graph $\tau(G(I))$ is an f-graph. On the other hand, for any f-graph H, we have $H = \tau(G(I(H)))$. Thus Theorem 4.5 can be rephrased as follows:

Theorem 6.2 (Classification Theorem for f-graphs). Let $V'(n)$ be the set of f-graphs with n vertices ($n \geq 4$). Then $V'(5) = W'_2 \cup C_5$, and $V'(n) = \bigcup_{i=2}^{\lfloor n/2 \rfloor} W'_i$ for $n \neq 5$, in which $W'_i \cap W'_j = \emptyset$ while $i \neq j$.

Recall that a complex Δ is called pure shellable, if the facets of Δ have the same dimension, and there is a shelling order on the facet set $\mathcal{F}(\Delta) : F_1, \cdots, F_m$, i.e., for each pair of $i < j$, there exists a $k < j$,
such that \(|F_j \setminus F_k| = 1 \) and \(F_j \setminus F_k \subseteq F_j \setminus F_l \). A graph \(H \) is called a pure shellable graph if \(\delta_N(I(H)) \) is pure shellable, in which \(\delta_N(I(H)) \) is the Stanley-Reisner complex of the edge ideal \(I(H) \) of \(H \).

In order to show that \(f \)-graphs are pure shellable, we introduce some concepts and notations. The number of vertices and edges in a graph \(H \) are denoted by \(v(H) \) and \(e(H) \) respectively. In particular, if \(U \) is a subset of \(V(H) \), then we use \(e(U) \) to denote the number of edges in the subgraph induced by \(U \). Let \(X \) and \(Y \) be a pair of disjoint subsets of \(V(H) \). Denote by \(E(X, Y) \) the set of edges with one end in \(X \) and the other end in \(Y \), and denote by \(e(X, Y) \) the number of edges in \(E(X, Y) \).

If a simple graph \(H \) has a bipartition \(V(H) = V_1 \cup V_2 \), where \(V_1, V_2 \) are a pair of complete subgraphs, then we call the bipartition a clique bipartition. For an \(f \)-graph \(H \), if \(H \notin C_5 \), then \(H \in W_r \) for some \(r \). It follows from the discussion in Section 4 that such an \(f \)-graph \(H \) has an unique clique bipartition. We call this bipartition a generic bipartition.

Lemma 6.3. Let \(H \) be an \(f \)-graph of \(r \) type with the generic bipartition \(V(H) = V_1 \cup V_2 \). Then \(e(V_1, V_2) < \min(v(V_1), v(V_2)) \).

Proof. Assume that \(v(H) = n \). Because \(H \) is an \(f \)-graph, hence \(e(H) = \frac{1}{2} \left(\frac{n^2}{2} \right) \). Assume without loss of generality that \(v(V_1) = r \leq v(V_2) = n - r \), then \(e(V_1) = \left(\frac{r}{2} \right) \), \(e(V_2) = \left(\frac{n-r}{2} \right) \). It is direct to calculate that

\[
e(V_1, V_2) = e(H) - e(V_1) - e(V_2) = \frac{1}{2} \left(\frac{n^2}{2} \right) - \left(\frac{r}{2} \right) - \left(\frac{n-r}{2} \right) = -r^2 + nr - \frac{n(n-1)}{4}.
\]

In the following, we will show \(e(V_1, V_2) - r < 0 \). In fact,

\[
e(V_1, V_2) - r = -(r - (n-1)/2)^2 - (n/4 - 1/4).
\]

Note that \(n/4 - 1/4 > 0 \) while \(n \geq 4 \), so \(e(V_1, V_2) - r < 0 \) holds for any \(n \geq 4 \). This completes the proof.

Lemma 6.4. Let \(H \) be a simple graph with a bipartition \(V(H) = V_1 \cup V_2 \). If \(e(V_1, V_2) < \min(v(V_1), v(V_2)) \), then \(\overline{H} \) is connected.

Proof. Assume that \(v(H) = n \), and assume without loss of generality that \(v(V_1) = k \leq n/2 \). Let \(V_1 = \{x_1, \ldots, x_k\} \) and \(V_2 = \{y_1, \ldots, y_{n-k}\} \) be the vertices. Because \(e(V_1, V_2) < k \), there is vertex \(x_j \in V_1 \) such that \(x_jy_1, \ldots, x_jy_{n-k} \) are not edges of \(E(V_1, V_2) \) (and consequently, not in \(H \)). So \(x_jy_1, \ldots, x_jy_{n-k} \) are edges of \(\overline{H} \). Similarly, there is a vertex \(y_l \) such that \(x_1y_l, \ldots, x_ky_l \) are not in \(H \), and thus in \(\overline{H} \). It is clear that the edges \(x_jy_1, \ldots, x_jy_{n-k}, x_1y_l, \ldots, x_{j-1}y_l, x_{j+1}y_l, \ldots, x_ky_l \) form a spanning tree of \(\overline{H} \). Thus, \(\overline{H} \) is connected.

Theorem 6.5. All \(f \)-graphs are pure shellable.

Proof. Let \(H \) be an \(f \)-graph. By Lemma 6.1, it is sufficient to show that the complex \(\overline{H} \) is pure shellable. Since all the facets of \(\overline{H} \) have dimension 1, \(\overline{H} \) is pure. In order to show that \(\overline{H} \) is shellable, it is clearly sufficient to show that \(\overline{H} \) is connected. In the following, consider the two subcases:

1. \(H \in C_5 \). It is clear that \(\overline{H} \) is connected.

2. \(H \) is an \(f \)-graph of \(r \) type for some positive integer \(r \). Assume that the generic bipartition of \(H \) is \(V(H) = V_1 \cup V_2 \). By Lemma 6.3, \(e(V_1, V_2) < \min(v(V_1), v(V_2)) \). It is clear that \(\overline{H} \) is connected by Lemma 6.4.

Since the graph \(\overline{H} \) is connected in any case, the complex \(\overline{H} \) is pure shellable. Hence the graph \(H \) is pure shellable.

\[\square\]
It is well known that every pure shellable graph is Cohen-Macaulay. So we have the following corollary.

Corollary 6.6. All f-graphs are Cohen-Macaulay.

It is shown by [9, Lemma 9.1.10] that every Cohen-Macaulay graph is unmixed. So, Proposition 5.2 also follows from Corollary 6.6.

Recall that a graph H is a Gorenstein graph if $K[x_1, \ldots, x_n]/I(H)$ is a Gorenstein ring. It is well known that Gorenstein graphs are a special class of Cohen-Macaulay graphs. Recall from [13, 6.2.16] that for a graph H, if H is connected and has no triangles, then H is Gorenstein if and only if H is a cycle. We have the following proposition.

Proposition 6.7. Let H be an f-graph. Then H is Gorenstein if and only if $H \in C_5$.

Proof. Note that the complement of a cycle with 5 vertices is still a cycle with 5 vertices, so the sufficiency part is clear. For the necessity part, by Proposition 6.2, the complement of f-graph H, which is not in C_5, is a bipartite graph. Consider the number of edges, H is clearly not a cycle. Hence H is not Gorenstein.

Recall that a Cohen-Macaulay graph H is said to be saturated, if $q = g(g+1)/2$ holds. By the above discussion, for an f-graph H, it is saturated if and only if it has 4 vertices, and by Proposition 6.2, the latter holds if and only if it is isomorphic to the following graph:

Let $R = k[x_1, \ldots, x_n]$. Recall from [13, 6.2.22] that for a Cohen-Macaulay graph H with n vertices, it is saturated if and only if $R/I(H)$ has a 2-linear resolution. By the above discussion, the following proposition clearly holds:

Proposition 6.8. Let H be an f-graph. Then $R/I(H)$ has a 2-linear resolution if and only if H is isomorphic to the line graph in Figure 1.

7. F-ideals in general case

For a square-free monomial ideal I, denote $G(I) = \cup_{i=1}^{k} G_{d_i}$, in which G_{d_i} consists of monomial generators of degree d_i. The following lemma is a simple fact, thus the verification will be omitted:

Lemma 7.1. If I is a square-free monomial ideal, then

1. $\sigma (\cap_{i=1}^{k} (G(I))) = \delta_F(I) \cap \delta_N(I);$

2. $\sigma (\cup_{i=1}^{k} (G(I))) \cap \delta_F(I) = \emptyset$ and $\sigma (\cup_{i=1}^{k} (G(I))) \cap \delta_N(I) = \emptyset$.

The following result characterizes the f-ideals in general case.

![Figure 1. Line graph with 4 vertices.](image-url)
Theorem 7.2. Let I be a square-free monomial ideal of $S = K[x_1, \ldots, x_n]$, with the minimal generating set $G(I) = \bigcup_{i=1}^{k} G_d$. Then I is an f-ideal if and only if
\[
|G| = \frac{1}{2} \left(\binom{n}{l} - |\bigcup_{d_i \in I} (\cap_l^{d_i - l}(G_d))| - |\bigcup_{d_i \in I} (\cup_l^{d_i - d_i}(G_d))| \right)
\]
holds for each $l \in [n]$.

Proof. For each $l \in [n]$, denote by A_l the faces in $(\delta_{X'}(I) \setminus \delta_X(I)) \cap [n]$. Note that $sm(S)_l$ is a disjoint union of four parts:
\[
sm(S)_l = G_l \cup \bigcup_{d_i > l} (\cap_l^{d_i - l}(G_d)) \cup \bigcup_{d_i < l} (\cup_l^{d_i - d_i}(G_d)) \cup \sigma^{-1}(A_l).
\]
By Lemma 7.1, $f_{l-1}(\delta_X(I)) = |G_l| + |\bigcup_{d_i > l} (\cap_l^{d_i - l}(G_d))| + |\sigma^{-1}(A_l)|$. Thus I is an f-ideal if and only if $f_{l-1}(\delta_X(I)) = f_{l-1}(\delta_X(I))$ holds for each $l > 0$ and the latter holds if and only if $|G_l| = |\sigma^{-1}(A_l)| = \frac{1}{2}\binom{n}{l} - |\bigcup_{d_i > l} (\cap_l^{d_i - l}(G_d))| - |\bigcup_{d_i < l} (\cup_l^{d_i - d_i}(G_d))|$ holds for each l.

Even though the abstract properties of f-ideals in general case are characterized, it is still not easy to show an example of an f-ideal with generating elements not on the same degree. The following result is easy to see by Theorem 7.2.

Corollary 7.3. Let I be an f-ideal of $S = K[x_1, \ldots, x_n]$. For an integer $l \in [n]$ with $l < \deg(I)$, $sm(S)_l \subseteq \cap_{l}^{\infty}(G(I))$ holds true. On the other hand, if $l > \deg(I)$, then $sm(S)_l \subseteq \cup_{l}^{\infty}(G(I))$ holds.

It is easy to see that Theorem 2.3 is a special case of Theorem 7.2.

For further results on the $(n, d)^{th}$ f-ideals and on the general case, see [8].

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 11601108, 11526065 and 11271250), the Hainan Natural Science Foundation (Grant No. 20161002) and the Doctoral Scientific Research Foundation of Hainan University (Grant No. kyqd1511).

References

