Microporous Hexanuclear Ln(III) Cluster-Based Metal–Organic Frameworks: Color Tunability for Barcode Application and Selective Removal of Methylene Blue

Ming-Liang Gao,† Wen-Jing Wang,‡ Lin Liu,† Zheng-Bo Han,*† Na Wei,† Xiao-Man Cao,† and Da-Qiang Yuan*‡

† College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
‡ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Supporting Information

ABSTRACT: Two hexanuclear Ln(III) cluster-based metal–organic frameworks (MOFs) (Ln = Tb or Eu) and a series of isomorphic bimetallic Ln(III)-MOFs have been synthesized by changing the ratio of Tb(III) and Eu(III) under solvothermal conditions. The excellent linear color tunability (from green to red) makes them suitable for barcode application. In addition, the anionic Ln(III)-MOFs exhibit superior uptake capacity toward methylene blue (MB+) by an ion-exchange process, and its reversible adsorption performance makes it suitable for removal of organic dye MB+. The as-prepared anionic hexanuclear Ln(III) cluster-based MOFs can serve as a multifunctional material for an optical and environmental area.

INTRODUCTION

Barcoded material† on labels has been a considerable focus for multiplexed bioanalytical science and antiforgery application (Scheme 1).‡ A perfect barcoded material should meet some requirements. The material ought to be robust and securable on large scale; its synthetic strategy should be straightforward and highly repeatable, and its spectral absorption or emission signal should be easily detected and unambiguously rendered. In addition, it is necessary to provide plentifully feasible coding combinations. Today, multiband barcoded materials have been principally prepared with organic luminescence dyes or semiconductor quantum dots, which were implanted into organic conjugated polymers or inorganic silica colloids. Nevertheless, organic fluorescein has broad emission bands, which lead to the spectroscopic overlap, and a portion of the securable characteristic bands for barcoded materials can also be limited. Although quantum dot materials could emit a relatively narrow spectroscopy characteristic signal, they were universally prepared with toxic substances (e.g., CdSe, CdS, and CdTe). In recent years, developing novel lanthanide [Ln(III)]-based luminescent material with controlled and fine-tuned property for barcode material has been a very active field. Ln(III)-based luminescent barcode materials have unparalleled peculiarities in comparison with the organic fluorescein and semiconductor quantum dots, including narrow emission characteristic bands, nonoverlapping spectra, large Stokes shifts, and high color purity. Most importantly, every Ln(III) cation has its characteristic emission peaks, which could not be affected by their environment. This feature means Ln(III) luminescence barcodes can be used in various materials and solvents. On the other hand, organic chromophore ligands always can be used to sensitize the free Ln(III) because of its very low extinction coefficient. To achieve efficient sensitization, it is very important to place the chromophore ligands and Ln(III) at the proper location for energy transfer.

Received: October 4, 2016
Published: December 12, 2016
Recent research has shown that Ln(III) metal–organic frameworks [Ln(III)-MOFs] are very promising platforms because the Ln(III) ions and sensitizers can be organized into long-range ordered structure to allow dense packing and enhanced emission while minimizing self-quenching. In addition, by using a single excitation wavelength, different Ln(III) cations can be sensitized at the same time by judicious selection of the chromophoric ligands to realize the concurrent emission of multiple bands, which could satisfy the applicable requirements of barcode materials. The first barcode system based on mixed metallic Ln(III)-MOFs was prepared by Rosi and Petoud. In this study, bimetallic near-infrared (near-IR) Ln(III)-MOFs that emit near-IR optical signals were linearly correlated to the mixed Ln(III) ion ratio. However, the high-nuclearity Ln(III) cluster-based MOFs used for barcoded requirements of barcode materials. The selection of the chromophoric ligands to realize the concurrent sensitization of the Ln(III) cations can be sensitized at the same time by judicious choice of the chromophoric ligands. Fourier transform infrared (FT-IR) spectra using KBr pellets were recorded on a Nicolet 5DX spectrometer at 40 kV and 40 mA with Cu Kα radiation. All the UV/vis absorption data were collected using a SP-752(PC) UV–vis spectrophotometer.

EXPERIMENTAL SECTION

Materials and General Procedures. All starting ligands (H$_2$BPDC and 2-fluorobenzoic acid), Ln(NO$_3$)$_3$·6H$_2$O (99.9%), and solvents employed in this work were used without further purification. Elemental analyses (EA) of C, H, and N were performed with a PerkinElmer 240 analyzer. The Fourier transform infrared (FT-IR) spectra using KBr pellets were recorded on a Nicolet SD 1000 spectrometer in the of range 4000–400 cm$^{-1}$. Powder X-ray diffraction (PXRD) spectra were recorded on a Bruker AXS D8 advanced automated diffractometer at 40 kV and 40 mA with Cu Kα radiation. Themogravimetric (TG) analyses were performed on a PerkinElmer Pyrisl analyzer (298–1176 K, heating rate of 5 K min$^{-1}$), flowing N$_2$ (g). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) data were collected on an Agilent Technologies 700 Series ICP-OES instrument. Luminescence spectroscopy and lifetime data for the solid samples were collected on a FLSP920 Edinburgh fluorescence spectrophotometer at room temperature. All the UV/vis absorption data were collected using a sp-752(PC) UV–vis spectrophotometer.

Synthesis of (DMA)$_2$[Eu$_6$(μ$_3$-OH)$_6$(BPDC)$_6$]x(Solvent) (1). Tb(NO$_3$)$_3$·6H$_2$O (9 mg, 0.0225 mmol), H$_2$BPDC (5 mg, 0.0225 mmol), and 2-fluorobenzoic acid (95.2 mg, 0.675 mmol) were added to a 20 mL scintillation vial with a mixed solvent of DMF (2 mL) and EtOH (0.5 mL) and stirred for 0.5 h at room temperature. Then the mixture was preserved at 378 K for 36 h and slowly cooled (cooling rate of 5 K h$^{-1}$) to room temperature to obtain the polyhedral crystals of 1. The as-prepared crystals were washed with DMF and air-dried at room temperature (yield of ~53%). In addition, DMF solvent decomposed at 378 K to form counteractation DMA$^+$ (dimethylamine cation). EA. Calc'd (%) for I, C$_{30}$H$_{26}$Tb$_3$O$_{38}$. Found: C, 40.29; H, 2.77; N, 1.07. FT-IR (KBr pellets): 3425 (s), 2931 (w) 1666 (vs), 1605 (s), 1542 (m), 1405 (s), 1250 (m), 1172 (s), 1095 (m), 846 (m), 771 (m), 663 (w), 555 (m) cm$^{-1}$.

**Synthesis of (DMA)$_2$[Eu$_6$(μ$_3$-OH)$_6$(BPDC)$_6$]x(Solvent) (2), 2 was obtained by a procedure similar to that used for 1 except for using Eu(NO$_3$)$_3$·6H$_2$O instead of terbium nitrate. Yield: 66%. EA. Calc'd for C$_{30}$H$_{26}$Eu$_3$O$_{38}$: C, 40.95; H, 2.81; N, 1.09. Found: C, 39.56; H, 2.31; N, 1.12. FT-IR (KBr pellets): 3426 (s), 2930 (w), 1668 (vs), 1604 (s), 1542 (m), 1405 (s), 1252 (m), 1172 (m), 1094 (m), 844 (m), 772 (m), 664 (w), 553 (m) cm$^{-1}$.

X-ray Crystallography. Single-crystal diffraction data of complexes 1 and 2 were collected at 100 K with a Bruker AXS smart Apex CCD II diffractometer using Mo Kr (λ = 0.71073 Å) radiation and a SuperNova, Dual, Cu at zero, Atlas diffractometer with Cu Kr (λ = 1.5418 Å) radiation, respectively. The structure was determined by direct methods using SHELXS-97 and refined on F2 by full-matrix least squares with the SHELXTL-97 crystallographic software package. DMA$^+$ cations and guests were highly dispersed. The diffused electron densities resulting from these residual molecules were removed from the data set using the SQUEEZE routine of PLATON and refined further using the data generated. Crystallographic data and experimental details for structural analyses are summarized in Table S1. The CCDC reference numbers were 1454038 and 1454039 for 1 and 2, respectively. A copy of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [fax: int code +44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk].

**Synthesis of ((DMA)$_2$[Eu$_6$(μ$_3$-OH)$_6$(BPDC)$_6$]x(Solvent) (3–6)). 3–6 were synthesized using a procedure similar to that used for 1 in which mixed Eu(NO$_3$)$_3$·6H$_2$O (0.225x mmol) and Tb(NO$_3$)$_3$·6H$_2$O (0.0025x (1 – x) mmol) [x = 0.005 (3), 0.010 (4), 0.050 (5), and 0.075 (6)] were substituted for Tb(NO$_3$)$_3$·6H$_2$O. The obtained colorless polyhedral crystals were washed with DMF and air-dried at room temperature.

Selective Removal and Separation of an Organic Dye. The prepared 1 (20 mg) was soaked in 5 mL DMF solutions in which different organic dyes were dissolved (5 × 10$^{-5}$ M) and monitored by UV–vis spectra at room temperature. The desorption experiment with MB$q@1$ was performed after the cation-exchange process of MB$^+$ on anionic 1. Then, MB$q@1$ was successively soaked in the pure DMF solution (5 mL) and a saturated NaCl/DMF solution (5 mL).

RESULTS AND DISCUSSION

Crystal Structure. Single-crystal XRD data analysis demonstrates that 1 and 2 are isomorphic, so only complex 1 is described here in detail. As shown Figure 1, this crystallizes in cubic space group Fm3m. Each Tb$^{3+}$ was encircled by four μ$_3$-OH groups, four oxygen atoms from the carboxylate groups of independent BPDC ligands (Figure 1a). Six adjacent Tb$^{3+}$ cations were linked by eight μ$_3$-OH groups to form a

![Figure 1.](image-url)
hexanuclear unit. Each hexanuclear unit was linked by 12 BPDC ligands to construct a 12-connected three-dimensional MOF. Two types of microporous polyhedral cages, the tetrahedral cages with an estimated diameter of 1.2 nm and the octahedral cages with an estimated diameter of 1.6 nm, were constructed by the self-assembly of the hexanuclear units and bridging ligands. The theoretical void ratio of 1 is 70%, calculated with PLATON.14

Thermal Stability. TG analysis showed that all lattice molecules could be evacuated upon heating of the sample to 160 °C (Figure S1). The phase purity of the hexanuclear Ln(III) cluster-based MOFs was confirmed by PXRD (Figure S2). Additionally, the hexanuclear Ln(III) cluster-based MOF exhibits favorable chemical stability (Figure S3), which is a crucial factor for developing its relevant applications.

Luminescence Properties of the Hexanuclear Ln(III) Cluster-Based MOF. Luminescent Ln(III)-based MOF materials usually emit sharp characteristic bands with different colors. For this reason, designing luminescent Ln(III)-based MOFs is an advisable choice for acquiring tunable optical materials. To obtain good optical materials, we investigated the luminescence properties of 1 and 2. The excitation and emission spectra of 1, 2, and H$_2$L are shown in Figure 2 and Figure S4. The luminescence emission spectra of power samples 1 and 2 were recorded with excitation wavelengths of 293 and 316 nm, respectively. Figure 2a exhibits the characteristic transitions of the Tb$^{3+}$ ion at 490, 547, 588, and 623 nm, which are attributed to the $^5D_4 \rightarrow {}^7F_j$ (j = 6, 5, 4, and 3) characteristic transitions, respectively, while Figure 2b displays the characteristic transitions ($^5D_0 \rightarrow {}^7F_p$ where j = 0, 1, 2, 3, and 4) of Eu$^{3+}$ at 578, 592, 613, 650, and 698 nm, respectively. In the emission spectra of 1 and 2, the characteristic emission of BPDC ligands disappeared. This phenomenon indicated that the transfer of intramolecular energy from the BPDC ligand to Tb$^{3+}$ and Eu$^{3+}$ was much more efficient. As we know, preparing the bimetallic Ln(III)-based MOFs is an efficient strategy for generating multicolored photoluminescence. To achieve this goal, we successfully obtained a series of bimetallic Ln(III)-MOFs (Ln = Eu$^{3+}$ and Tb$^{3+}$) 3–6 by solvothermal synthesis. All the bimetallic Ln(III)-MOFs were confirmed by PXRD patterns, and the bimetallic Ln(III)-MOFs matched well with the simulated data and maintained its crystalline integrity (Figure S5). ICP-OES analysis results showed that the Ln(III) composition of the resulting products matched well with the quantity of Ln(III) nitrate used in preparing bimetallic Ln(III)-MOFs. This result indicated that solvothermal synthesis provided a predictable manner for preparing any desired Ln(III) composition in the final product. This foreseeable factor and simple synthesis method was highly appropriate for preparing barcoded materials.

The investigation of luminescence properties revealed the different bimetallic Ln(III) materials could result in discernible and peculiar optic barcoded signals. As shown in Figure 3 and Figure S6, the emission of bimetallic 3–6 showed peculiar characteristic emission peaks from both Eu$^{3+}$ and Tb$^{3+}$ hybrid centers. All the excitation spectra of bimetallic 3–6 were broad bands centered at ~300 nm, and the phenomenon occurred because of the simultaneous sensitization by BPDC ligands (Figure S7). This endows the hexanuclear Ln(III) cluster-based MOF with the same excitation band, which was important to the barcoded material application. With an increase in the amount of Eu$^{3+}$ and a proportional decrease in the amount of Tb$^{3+}$ in mixed Ln(III)-MOFs, the red emission intensity was increased while the green emission intensity decreased accordingly. It implied that we could tune the luminescence intensities of Ln(III)-based MOFs via quantitatively controlling the two emitting Ln(III) ions. The mixed hexanuclear Ln(III) cluster-based MOF exhibits a 5D_4 (Tb$^{3+}$) lifetime shorter than that of 1 but a 5D_0 (Eu$^{3+}$) lifetime longer than that of 2. These phenomena indicated that the energy is transferred from Tb$^{3+}$ to Eu$^{3+}$. Therefore, in the bimetallic hexanuclear Ln(III) cluster-based MOF, the emission spectra of Eu$^{3+}$ cations can be further sensitized by Tb$^{3+}$ cations within the host framework
Theoretically, the efficiency of ET \((E)\) between the donor and the acceptor can be simulated via the luminescence lifetime of the donor\(^{15,17,18}\)

\[E = 1 - \frac{\tau_{da}}{\tau_d} \]

Figure 4. Energy transfer efficiency from Tb\(^{3+}\) to Eu\(^{3+}\) within Ln(III)-MOFs.

This ET may be prevalingly controlled by the phonon-assisted Förster ET mechanism\(^{15,17}\), which represents an essential benefit for the sensitization behavior. With an increase in the Eu\(^{3+}\) cation content, the ET efficiency increased gradually. This implies that the regularity of the ET may be caused by regular structural features and permanent porosity of the Ln(III) cluster-based MOF. Furthermore, the relative intensities of compounds 1–6 could be reflected as distinct and perceptible color, which is consistent with six different barcodes. As depicted in Figure 5 and Figure S8, the points of emission of 1, 3–6, and 2 in the CIE diagram were green \((X = 0.3187, Y = 0.5598)\), yellow \((X = 0.4058, Y = 0.4810)\), reddish yellow \((X = 0.4612, Y = 0.4531)\), orange \((X = 0.5164, Y = 0.4060)\), yellowish red \((X = 0.5690, Y = 0.3838)\), and red \((X = 0.6282, Y = 0.3485)\), respectively. The emission colors and the chromaticity coordinates can be systematically tuned with precise correlation to the Eu\(^{3+}/\)Tb\(^{3+}\) ratios. The excellent linear correlation in color tunability is crucial for application in barcoded materials\(^{15}\).

Organic Dye Selective Removal and Separation.

Besides the barcode application, we also explored the potential application of the anionic type hexanuclear Ln(III) cluster-based MOF in organic dye removal\(^{19}\). When 20 mg of 1 was soaked in a DMF solution of MB\(^+\) \((5 \text{ mL, } 5 \times 10^{-5} \text{ M})\), it was detected by the UV-vis spectra at room temperature. The Abs peak of MB\(^+\) at 664 nm declined gradually with an increase in soaking time and was almost totally adsorbed (up to 99%) after 24 h, which showed the high efficiency removal capacity of MB\(^+\) by 1 (Figure 6a).

An excellent adsorbent material needs not only an outstanding adsorption property toward the dyes with a steady nature and easy recyclability but also the eminent capability of selective removal and separation. Thus, three organic dyes, Methyl Orange (MO\(^-\)), Sudan I (SD\(^9\)), and Crystal Violet (CV\(^+\)), were selected as competitive dyes for selective adsorption and separation experiments (Table 1 and Scheme 3). The as-synthesized samples were immersed in the fresh DMF solution containing MO\(^-\), SD\(^9\), or CV\(^+\) under the same condition. The UV–vis absorption intensity of the Abs band of MO\(^-\) at 466 nm (Figure S9a), SD\(^9\) at 488 nm (Figure S9b), and CV\(^+\) at 549 nm (Figure S9c) remained unchanged. This good selective adsorption of organic dyes prompted us to study the properties of separation of cationic MB\(^+\) from the mixed MB\(^+\)/MO\(^-\), MB\(^+\)/SD\(^9\), and MB\(^+\)/CV\(^+\) DMF solutions. As displayed in Figure 6b–d, the intensity of the Abs band of MB\(^+\) gradually declined and other characteristic Abs bands remained nearly unchanged, indicating that only the MB\(^+\) in the mixed solutions...
was absorbed by 1. In a word, other competitive organic dyes had no effect on the MB⁺ adsorption capacity of 1. More exhilaratingly, this selective removal process of MB⁺ can even be easily perceived by the naked eye because of the conspicuous change in the color of the mixed solution. Finally, the supernatants were the colors of MO⁻, SD⁰, and CV⁺, and the color of 1 changed to blue (inset of Figure 6b-d). This could be attributed to the anionic framework peculiarity of 1, and the free countercation DMA⁺ reside in the cages could be exchanged with MB⁺. However, anionic and neutral dyes could not be absorbed by 1. Although CV⁺ has the same electric charge as MB⁺, the larger CV⁺ molecules could be excluded from the microspores of 1. Therefore, anionic type 1 was a good adsorbent for MB⁺ removal through the ion-exchange process.

In addition, desorption experiments with MB⁺ were also performed and UV–vis spectra detected. The MB⁺@1 sample was soaked into a saturated NaCl/DMF solution (5 mL). As shown in Figure 7 and Figure S10, the Abs peak of the supernatant increased gradually. This phenomenon can be assigned to the entry of Na⁺ into the cages of 1 replacing MB⁺, which was based on the kinetic equilibrium between different guest species. For comparison, MB⁺@1 could hardly release MB⁺ in a pure DMF solution, proving the replacement of MB⁺ with Na⁺ really occurs. PXRD of 1 after release confirmed its high stability (Figure S11). This high stability and reversible adsorption feature were crucial to the MB⁺ removal application.

CONCLUSIONS

In summary, two new anionic hexanuclear Ln(III) cluster-based MOFs (Ln = Tb and Eu) have been successfully synthesized under solvothermal conditions. In addition, a series of isostructural bimetallic hexanuclear Ln(III) cluster-based MOFs were prepared by changing the ratio of Eu³⁺ to Tb³⁺. The excellent linear color tunability and dichromatic photoluminescence endow them with the potential for use in barcoded systems in a practical application. In addition, the...

DOI: 10.1021/acs.inorgchem.6b02413