Agarwood formation induced by fermentation liquid of *Lasiodiplodia theobromae*, the dominating fungus in wounded wood of *Aquilaria sinensis*

Xuyu Chen¹, ², Chun Sui¹, Yangyang Liu², Yun Yang², Peiwei Liu², Zheng Zhang¹, Jianhe Wei¹ ²*

¹ Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Chinese Peking Union Medical College, Beijing 100193, China

² Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Haikou 570311, China

Correspondence:

*Jianhe Wei, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Chinese Peking Union Medical College, Beijing 100193, China

E-mail: wjianh@i263.net; Tel: (+86) 10 57833016
Abstract: Agarwood is broadly used in incense and medicine. Traditionally, agarwood formation is induced by wounding the trunks and branches of some species of *Aquilaria* spp., including *A. sinensis*. As recently evidenced, some fungi or their fermentation liquid may have the potential of inducing agarwood formation. The present study aimed to analyze the fungi isolated from an agarwood-producing *A. sinensis* tree and subsequently identify the fungi capable of promoting agarwood formation. We identified a total of 110 fungi isolates based on their morphological characteristics and rDNA ITS sequences. These isolates came from four different layers (namely the decomposing layer, agarwood layer, transition layer and normal layer) near the agarwood formation site of the trunk. According to the experimental results, most of them belonged to *Dothideomycetes* (81.82%), while the others to *Sordariomycetes* (13.64%) or *Eurotiomycetes* (4.55%). Of note, 88 isolates were shown belonging to the species of *Lasiodiplodia theobromae* that are most frequently isolated from different layers. In addition, when the fermentation liquid of two isolates of *L. theobromae* (AF4 and AF12) and one isolate of *Fusarium solani* (AF21) was inoculated into the *A. sinensis* wood using the Agar-Wit technique, promoted agarwood formation was observed; however, the effect of AF21 did not keep stable in the later test, while AF4 and AF12 still functioned one year later. This study may lay a foundation for exploring the underlying mechanism of agarwood formation as well as fungi application in agarwood production.

Key words: Artificial agarwood production; Fungi screening; Stable inducing effect;

Introduction

Agarwood is widely used in perfumery, traditional medicine and incense in ceremony [8, 9]. Actually, it is the resinous portion of the trunk and branches of *Aquilaria*, *Gonystlus*, and *Gyrinopss* species (Thymelaeaceae) [11, 16, 18], and cannot be produced in a healthy tree under a natural environment. Agarwood formation is only available under certain external factors, such as lightning strike, animal grazing, insect attack or microbial invasion, typically around wounded or rotting parts of the trunk [3, 31, 36]. Because of the rareness and slow formation
of wild agarwood, some artificial agarwood-inducing methods have been developed, especially for the endangered agarwood-producing species. Most previous artificial techniques focused on imitating natural agarwood formation using axes, knives and nails to wound tree trunks and branches [30]. Noticing the fungi infection that usually accompanies the physical wounding of trees, some researchers showed interest in promoting agarwood formation via fungi. The fungi-inoculation method was first presented by Tunstall in 1929 [13], and then introduced into China in 1976. The research concerning Aquilaria callus has showed that some plant elicitors, such as jasmonic acid and methyl jasmonate, are capable of inducing the production of representative chemical components in agarwood [19, 21, 33]. Our laboratory has developed a significant method—the whole-tree agarwood-inducing technique (Agar-Wit) [43]. By this method, an agarwood inducer is inoculated into the xylem part of Aquilaria trees through cheap and simple transfusion sets. Along with water transportation, the inducer is transported throughout a tree, and consequently induces an overall wound, resulting in agarwood formation in a short period of time [24, 44].

The opinions regarding the mechanism of agarwood formation generally fall into two categories: (1) agarwood forms when a tree is physically wounded and simultaneously infected by fungi [28, 40]; (2) agarwood forms as long as a tree is physically wounded, regardless of fungi infection [29, 36]. According to our recent research, a wounding treatment enables the biosynthesis of sesquiterpene (a representative agarwood substance) as well as the formation of the typical structure vessel-occlusion in the stems of A. sinensis trees, without causing any variation of microbial communities [49]. Under the hypothesis presented in [50], agarwood is a response of plant defense [52]. When an Aquilaria tree is wounded, damage signals are induced and transmitted to activate the defense response, which subsequently leads to the production of defensive substances such as sesquiterpenes and phenylethylchromone derivatives. These secondary metabolites are imbedded in the wood tissue to avoid damage expansion, resulting in agarwood formation [46]. The causal wounding agents include physical, chemical, fungi-infecting and elicitors-inducing factors.

Different methods for tree wounding result in different qualities of agarwood [49].
Among these methods, physical wounding methods usually harvest high-quality agarwood, but will take a few years or even one decade. The Agar-Wit technique developed in our lab realizes a much faster agarwood formation, while causing less damage to the endangered natural resources [24, 43, 44]. We are now making efforts to increase the agarwood quality and further shorten the time required for artificial agarwood production by this technique. It has been commonly accepted that some fungi have potential in accelerating agarwood formation and improving agarwood quality. In 1976, the researcher from Guangdong Institute of Botany found that fungi infection of *A. sinensis* led to agarwood formation. Qi et al. [34] reported that *Menanotus flavolives* infection of *A. sinensis* accelerated agarwood formation. Gibson [13] isolated an endophytic *Cytosphaera mangiferae*, which led to agarwood formation when inoculated to healthy trees. Subeham et al. [39] inoculated *Fusarium laseritum* into the holes on the trunk of *Aquilaria* sp. trees and obtained agarwood one year later. Feng [12] isolated nine strains from the agarwood of *A. sinensis*, and identified four species (*Botryosphaeria rhodina*, *Hypocreajecorina*, *Trichoderma reesei*, *T. koningii*) capable of promoting the formation of good-quality agarwood. Xu [45] evidenced that *Fusarium* sp. promoted agarwood formation one year after fungi inoculation.

In this work, an agarwood-forming site in a tree of *A. sinensis* was dissected into four layers, including the decomposing layer (DL), agarwood layer (AL), transition layer (TL) and normal layer (NL) [15] from which fungi were respectively isolated and identified. Using Agar-Wit technique, the fermentation liquid of thirteen isolates was screened and evidenced to play a certain role in stimulating agarwood formation.

Materials and methods

Plant materials

From an eight-year-old tree grown in the *A. sinensis* plantation garden of Hainan Branch Institute of Medicinal Plant Development, located in Hainan Province of China, was cut off a branch sprouting from the main truck. The cutting site was about one meter above the
ground, with the section diameter of about eight centimeters (Fig. 1a). Two years later, when agarwood formed, woody samples were collected respectively from the DL, AL, TL and NL near the agarwood formation site (Fig. 1b), and then cut into 3 × 3 cm blocks for further layer cutting.

Fungi isolation

Surface sterilization was performed according to Dobranic et al. with some modification [10]. The woody blocks were first washed thoroughly in running tap water, then immersed successively in 70% ethanol for 3-5 min and 10% sodium hypochlorite for 5 min, and finally rinsed in sterile distilled water for three times. Although layer distinction was somewhat difficult because of the thin-layered AL, a dark line usually appeared when agarwood formed. Then fifteen sterile blocks of 3 × 3 mm each were randomly cut using a cork borer for each layer, and placed in 90 mm-diameter petri dishes at three blocks per dish, which contained potato dextrose agar (PDA) medium (potato 200 g, dextrose 20 g and agar 15 g in one liter) with ampicillin 100 mg/L to suppress bacterium contamination. Different layers were found to have different cutting characteristics. The DL was soft, loose and easy to cut, the AL was hard and difficult to cut, the TL had hardness between the AL and NL. To avoid cross-contamination between different layers, both the cork borer and the cut slices were sterilized. Next all the petri dishes were sealed by parafilm ‘M’ and incubated in a light chamber at 12 h light/dark cycles at 28°C ± 2°C. Five days later, new fungal colonies were monitored or picked out everyday, and this process lasted at least 2 weeks until all the fungi were separated as single colonies. Individual fungal colonies were picked from the edge with a sterile fine tipped needle and transferred onto PDA. After subculture, these fungi were stored at the Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences. AF4 and AF12 (CGMCC No.9595) were deposited as living cultures in China General Microbiological Culture Collection Center.

ITS sequences analysis
After subculture of fungal isolates grown on PDA for 5 days, fresh mycelia were inoculated into a 100 mL Erlenmeyer flask containing 50 mL liquid potato dextrose (PD) medium and cultured in a shaking incubator at 120 rpm/min for 3-15 days in darkness at 28 °C. Mycelia from each fungus were obtained by vacuum filtration. The total genomic fungal DNA was extracted by the plant genomic DNA kit (TIANGEN, CHINA). Each fungal DNA was amplified with primers ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). The amplification was performed in a 25µL reaction volume containing 100 ng template DNA, 1µL of 10 pmol of each primer, and 12.5µL of 2× PCR MasterMix (TIANGEN, CHINA). The thermal cycling program was as follows: 5 min initial denaturation at 94°C, followed by 30 cycles of 1 min denaturation at 94°C, 1 min primer annealing at 50°C, 1 min extension at 72°C, and a final 7 min extension at 72°C. A negative control using water instead of template DNA was included in the amplification process. From each PCR reaction, 5µL of PCR products was examined by agarose gel electrophoresis at 0.8% (w/v) using ethidiumbromide staining. PCR products with distinct bands were sequenced using the primer pairs ITS1 and ITS4 on an ABI 3730 XL sequencer (SANGON, CHINA). All the fungal sequences were blasted in GenBank.

<table>
<thead>
<tr>
<th>Four layers strains</th>
<th>Genbank accession No.</th>
<th>Closely related species (GenBank accession No. and similarity %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1</td>
<td>KX650826</td>
<td>Aspergillusniger (Gu951769 and Ku882054, 99%)</td>
</tr>
<tr>
<td>DL2</td>
<td>KX650827</td>
<td>Nigrospora sp. (KT192335 and KU504328, 99%)</td>
</tr>
<tr>
<td>DL3</td>
<td>KX650828</td>
<td>Lasiodiplodiatiotheobromae (JX868613 and KJ381073, 100%)</td>
</tr>
<tr>
<td>DL4</td>
<td>KX650829</td>
<td>Penicilliumpurpurogenum (HQ907949 and HQ637358, 99%)</td>
</tr>
<tr>
<td>DL5</td>
<td>KX650830</td>
<td>Lasiodiplodiapseudotheobromae (AB873041 and KT208383, 99%)</td>
</tr>
<tr>
<td>Layer</td>
<td>Accession</td>
<td>Species/Genus</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>AL1</td>
<td>KX650831</td>
<td>Fusarium solani</td>
</tr>
<tr>
<td>AL2</td>
<td>KX650832</td>
<td>Hypocrea xiiii</td>
</tr>
<tr>
<td>AL3</td>
<td>KX650833</td>
<td>Lasiodiplodia theobromae</td>
</tr>
<tr>
<td>AL4</td>
<td>KX650834</td>
<td>Megacapitulavillosa</td>
</tr>
<tr>
<td>AL5</td>
<td>KX650835</td>
<td>Purpureocillium lilacinum</td>
</tr>
<tr>
<td>AL6</td>
<td>KX650836</td>
<td>Fusarium sp.</td>
</tr>
<tr>
<td>AF7</td>
<td>KX650837</td>
<td>Lasiodiplodia theobromae</td>
</tr>
<tr>
<td>DL1</td>
<td>KX650838</td>
<td>Lasiodiplodia theobromae</td>
</tr>
<tr>
<td>DL2</td>
<td>KX650839</td>
<td>Purpureocillium lilacinum</td>
</tr>
<tr>
<td>NL1</td>
<td>KX650840</td>
<td>Fusarium sp.</td>
</tr>
<tr>
<td>NL2</td>
<td>KX650841</td>
<td>Spergillus wentii</td>
</tr>
<tr>
<td>NL3</td>
<td>KX650842</td>
<td>Lasiodiplodia theobromae</td>
</tr>
<tr>
<td>NL21</td>
<td>KX650843</td>
<td>Fusarium solani</td>
</tr>
<tr>
<td>NL5</td>
<td>KX650844</td>
<td>Aspergillus oryzae</td>
</tr>
</tbody>
</table>

For some strains showed the same morphological characteristics and ITS sequence in the four layers, only one strain as representative was submitted to GenBank.

Further verification of agarwood-inducing fungus by EF-alpha gene
To verify identification results obtained by ITS sequence alignment, primers EF1T (5′-ATGGGTAAGGAGGACAAGAC-3′) and EF2T (5′-GGAAGTACCAGTGATCATGTT-3′) were used to amplify EF-alpha gene. The reaction was performed in a 25 µL total volume containing 100 ng template DNA, 1 µL of 10 pmol of each primer, and 12.5 µL of 2 × PCR MasterMix (TIANGEN, CHINA). The thermal cycling program was: initial denaturation at 94 °C for 85s; 35 cycles of denaturation at 95 °C for 35 s, annealing at 57 °C for 55s, extension at 72 °C for 1 min; and a final 10 min extension at 75 °C. The EF-alpha gene sequence of isolate AF21 was submitted to GenBank (No. KY091148) and was aligned to be the sequence of *Fusarium solani* which is the same as the ITS identification. Therefore, the result analysis was conducted based on the ITS identification as well as the morphological characters.

Morphological characterization

The isolates were inoculated on PDA plates and grow in an incubator at 28 C for 7 days. Morphological observation was carried out when the mycelium of each isolate occupied the whole Petri plate. Morphological characteristics included macroscopic and microscopic characteristics. Macroscopic characteristics included the colony morphology and growth rate of the fungal isolates and microscopic characteristics included the conidial shape and size and color. If the fungi cannot produce spore in 7 days, we had to induce spore production by light culture for a lone time. The morphology of the fungi was observed on the slides and coverslips by scanning electron microscope (OLYMPUS SZX16) at Hainan Academy of Agricultural Sciences.

Screening of agarwood-promoting fungi

All together thirteen isolates (one isolate each from the species of *Megacapitulavillosa, Lasiodiplodiapseudotheobromae, Nigrosporasp., Fusarium sp., Fusarium solani, Trichoderma harzianum, Paecilomyceslilacinus, Penicilliumpurpureogenum, Aspergillus wentii, Aspergillus oryzae, Aspergillus niger* and two isolates from *Lasiodiplodiatheobromae*)
were cultured in the liquid PDA medium for seven days. The two isolates of *L. theobromae* showed distinct growth characteristics, in different colors and shapes. The mycelium was filtered, and then the remaining fermentation liquid was inoculated into the wood of three-year-old *A. sinensis* trees using the Agar-Wit technique [43]. The trees were planted in the *A. sinensis* plantation garden of Hainan Branch Institute of Medicinal Plant Development located in Hainan Province of China. A hole of 5 cm in diameter was made in the stems 50 cm above the ground. A total of 200 mL fermentation liquid was inoculated for each tree, and three trees were used for each treatment. The patented agarwood inducer-[44] and culture medium-inoculated trees were taken as control. Two months later, the woods were cut at 10 cm above and below the inoculated sites (IW) (at the trunk 30 cm above the ground). Agarwood-like materials from the inoculated trees were separately collected, and all fresh samples were naturally dried in shade. Whether agarwood had been formed was determined by the chromone content in the wood using the thin layer chromatography (TLC) method. Because sesquiterpenoids and 7-dimethoxy-2-(2-phenylethyl) chromone are the well-known characteristic active compounds of agarwood, and no chromone compounds exist in the healthy wood of *A. sinensis*, we chose the chromone as the detection index.

The TLC was conducted as follows: First, the wood or agarwood was crushed by a pulverizer and filtered with 26 meshes. Then, 1 g powder was extracted in 25 mL methanol for 30 min by the ultrasonic method (Ultrasonic Cleaner, 59 kHz, 500 W, SK8200H, China). The extract was filtered and evaporated to dryness under 80°C water baths. The residue was dissolved in methanol and adjusted to 5 mL Chromone (isolated previously in our laboratory) was used as standard constituents (ST). Finally, 2 μL solvent was drawn into a capillary, and then pressed onto the TLC plate (GF₂₅₄, 10 × 20 cm, Qingdao Haiyang Chemical Co., Ltd., China). The mobile phase used CHCl₃ : Et₂O (10 : 1, v/v). The TLC plate was developed and then visualized under UV₂₅₄.

Results

Fungi isolation and general characterization
A total of 110 fungi isolates were obtained in the present study. Based on morphological characteristics and rDNA ITS sequences, 90 isolates (81.82%) were determined to be members of *Dothideomycetes*, 15 isolates (13.64%) members of *Sordariomycetes* and 5 isolates (4.55%) members of *Eurotiomycetes*. In the class of *Dothideomycetes*, only one isolate belonged to the order of *Pleosporales*, while all the other 89 isolates belonged to the order of *Botryosphaeriales*. In the class of *Sordariomycetes*, one isolate belonged to the order of *Trichosphaeriales*, while the other 14 isolates belonged to the order of *Hypocreales*. All the five isolates of *Eurotiomycetes* belonged to the order of *Eurotiales*. Among all isolates, 106 isolates were identified at the species level, and only four isolates could not be classified into any given species, of which one belonged to the family of *Nigrospora*, and the other three to the family of *Fusarium*. Taken together, 10 species and 3 unidentified species were isolated in the present study. It is worth noting that 88 isolates belonged to the species of *L. theobromae*.

Characterization of fungi spreading in different wood layers of agarwood formation

To explore the fungal function in agarwood formation, four woody layers were defined. Thirty-seven (33.64%) fungi were isolated from the DL, 46 (41.82%) from the AL, 18 (16.36%) from the TL, and 9 (8.18%) from the NL. As shown in Fig. 2, *L. theobromae* was the dominant species in all the four layers. *Fusarium solani* was isolated from both the AL and NL, respectively with the number of two and one. *Paecilomyces lilacinus* was isolated from both the AL and TL, respectively.

Identification of fungi capable of promoting agarwood formation

To identify new fungi capable of promoting agarwood formation, the fermentation liquid of thirteen isolates which showed different morphological characteristics was tested using the Agar-Wit technique. The results show that the fermentation liquid of three isolates (two of *L. theobromae*, termed as AF4 and AF12, and one of *F. solani*, termed as AF21) had potential in promoting agarwood formation (Fig. 3a). One month after the inoculation of fermentation liquid of AF4, AF12 and AF21 into the wood of *A. sinensis*, the leaves gradually turned yellow.
(Fig. 3b); two months later, the wood turned brown, just like the trees inoculated with the patented agarwood inducer (Fig. 3a). While in the culture medium and the NAF6 fermentation liquid-inoculation groups, the wood of trees remained unchanged. Noticeably, all the fermentation liquid of AF4, AF12 and AF21, as well as the patented agarwood inducer, played a positive role in promoting agarwood formation; AF4 and AF12 outperformed AF12. Next, the extracts were analyzed by TLC to test if characteristic agarwood substances had been formed. The 6, 7-dimethoxy-2-(2-phenylethyl) chromone, a standard component, was determined to have an R_f value of 0.65. All the trees inoculated respectively with the fermentation liquid of AF4, AF12 and AF21, as well as the patented agarwood inducer, developed bright blue spots in the same position as standard chromone, while the culture medium-inoculated wood showed no spot on the TLC plate (Fig. 3g). We therefore draw the conclusion that the fermentation liquid of two isolates of *L. theobromae* (termed as AF4 and AF12) and one isolate of *F. solani* (termed as AF21) can induce *Aquilaria* trees to form agarwood through the Agar-Wit technique. The colonies of AF4, AF12, AF21 and NAF6 are shown in Fig. 3c, d, e and f, respectively. Although *Fusarium solani* (AF21) could promote the agarwood formation at the initial stage, its effect was not stable in the later test; while *L. theobromae* (AF4 and AF12) was still capable of promoting agarwood formation one year later.

Discussion

The identification and isolation of fungi from the healthy tissues or agarwood of *A. sinensis* and other agarwood-producing species have been extensively reported. Gong et al. [14] isolated 128 fungi from the leaves, roots and stems of *A. sinensis*, with *Fusirium* sp. 1 and *Glomerularia* sp. as the dominant species. Wang et al. [42] isolated 50 fungi from the stems, leaves, roots and wild agarwood of *A. sinensis*, with *Colletotrichum* as the generally dominant species and *Fusarium* as the specifically dominant species in agarwood. Xu [45] compared the fungi from the leaves of healthy *A. sinensis* trees and *Fusarium* sp.-inoculated trees, and found that *Collectrotrichum* was dominant in both types of leaves, but in drastically
different compositions. Zhang et al. [48] isolated 42 fungi from the resin-forming section and the healthy xylem of *A. sinensis*, and evidenced that the genus of *Acremonium* was dominant in the healthy xylem, and the genus of *Penicillium* was dominant in the resin-forming section. In this study, a total of 110 fungi were isolated, and the species of *L. theobromae* was determined to be dominant in each of the four woody layers. The different fungal populations and dominance might be attributed to different habitats and growth conditions of *A. sinensis* trees. *A. malaccensis* is another agarwood-producing species. It was found that *Alternaria, Cladosporium, Curvularia, Fusarium, Phaeoacremonium* and *Trichoderma* were found to be members of the agarwood community in *A. malaccensis* [32]. Additionally, it was to note that *Lasiodiplodia* species was once identified from the wounded samples of *A. malaccensis* from a natural forest in West Malaysia [27]. Fungi, for the first time, were identified simultaneously from all four layers during the agarwood-forming process in the present study. The fungi number isolated from the AL was much more than from the TL and NL, and even more than from the DL. Similar phenomena have been previously reported, where the fungi number in the resin-forming section was shown to be larger than that in the healthy xylem section [48]. The biochemical components in agarwood have anti-bacterial and anti-fungal activities, so that damage to trees can be lowered as much as possible. This explains why less fungi were found in the inner layers of TL and NL. Under the great demand for agarwood, the anti-fungal agarwood components, such as sesquiterpenes and phenylethylchromone derivatives, give rise to a critical issue: Is the metabolism of certain fungi or the whole metabolic intensity of fungi in the AL associated with agarwood quantity and quality?

Lasiodiplodia theobromae is a common pathogen in the tropics and subtropics, and attacks more than 280 species of plants [2, 6, 7]. Its infection is frequently associated with stem, canker, dieback and root rot disease [22, 37, 38]. The endophytic strains of *L. theobromae* have been found to produce jasmonic acid (JA), a kind of plant-growth inhibitor. JA and its derivatives (JAs) are wound-related hormones and signal molecules commonly existing most plants. When applied exogenously, they can stimulate the defensive genes to
increase the chemical levels of induced defenses [1, 17]. Agarwood forms only when the
A.sinensis tree is wounded. Therefore, agarwood formation is also considered a result of A.sinensis
defensive response. Sesquiterpenes and phenylethylchromene derivatives are the main fragrant
compounds of agarwood. Liao [23] confirmed that the JA and JAs signal molecules regulate the
biosynthesis compounds of agarwood sesquiterpenes. Han [17] evidenced that L.theobromae
produced JAs, thus leading to a significant increase of sesquiterpenes in A. sinensis. Krasnobajew
and Helmlinger[20] reported that a strain of L. theobromae that transforms β-ionone into a
large variety of metabolites by mainly by degrading the side-chain of the β-ionone molecule
by a C2-unity. Matsuura et al. [25] obtained two metabolites (5R) and (5S) 5-hydroxylasiodiplodins from the culture filtrate of a strain of L. theobromae, which showed
weak potato micro-tuber inducing activities. Yang et al. [47] isolated three hydroxylasiodiplodins from the mycelium extracts of L. theobromae, all of which showed the
potato micro-tuber inducing activity. In the present study, the fermentation liquids of
two isolates of L. theobromae was found to be capable of promoting agarwood formation. Up to
now, a total of 88 isolates of L. theobromae have been obtained. We expect to identify more
isolates with the agarwood formation-promoting activity or other valuable activities in future
work.

Some fungal species have been investigated for their functions in promoting agarwood
formation, such as Aspergillus spp., Botryodyplodia spp., Diplodia spp., Fusarium spp.,
Penicillium spp., Trichoderma spp., Chaetomiumglobosum, Menanotusflavolives,
Cytosphaeramangiferae and Hypocreajecorina [4, 5, 12, 13, 26, 33, 35, 37, 41, 45]. In this
study, two isolates of L. theobromae and one isolate of F. solani were evidenced to enable the
promotion of agarwood formation. Although Fusarium solani (AF21) promoted agarwood
formation at the initial stage, its effect was not stable in the later test; while L. theobromae
(AF4 and AF12) still functioned one year later. In our previous report, the agarwood induced
by the fermentation liquid of another isolate of L. theobromae showed similar composition
and antifungal activity of essential oil to wild agarwood [50]. The performance comparison
between AF12 and AF4 is under way in our lab. Although increasingly more fungi have been
identified to be related with agarwood formation, the underlying mechanism of fungal participation in agarwood formation remains unclear. The present study may be helpful to the future development of agarwood-inducing techniques and the exploration of fungal functions in promoting agarwood formation.

Acknowledgements This research was supported by the National Natural Science Foundation of China (Nos.81303312 and 81403055), Science & Technology Program of Hainan Province (Nos.ZDXM2015059 and ZDXZ2013013), Central Research Institutes of Basic research and Public Service Special Operations (No.2013HNB01), and Natural Science Foundation of Hainan Province (No.314183).

Conflict of interest The authors declare that they have no conflict of interest.

Reference

Aquilariasinensis trees via transfusion technique. CN101755629B
44. Wei JH, Zhang Z, Yang Y, Meng H, Gao ZH, Chen WP, Feng JD, Chen HQ (2009) A
kind of agarwood inducer and its production method. ZL 2009 1 0241212.8
45. Xu WN (2011) Evaluation on key technology of fungi infection induced aloes-forming
effect and preliminary research on the mechanism of the eaglewood formation.
Guangdong Pharmaceutical University, Guangdong, China, Master thesis.
46. Xu YH, Zhang Z, Wang MX, Wei JH, Chen HJ, Gao ZH, Sui C, Luo HM, Zhang XL,
Yang Y, Meng H, Li WL (2013) Identification of genes related to agarwood formation:
transcriptome analysis of healthy and wounded tissues of Aquilariasinensis. BMC
Genomics 14: 227
hydroxylasiiodiplodins from Lasiodiplodiatheobromae. Phytochemistry 54: 489–494
antimicrobial activity of endophytic fungi in Aquilariasinensis(Lour.) Gilg.J Microbiol 29:
6–10
Production of high-quality agarwood in Aquilariasinensis trees via whole-tree
(2014) Compositions and antifungal activities of essential oils from agarwood of
Aquilariasinensis(Lour.) Gilg induced by Lasiodiplodiatheobromae (Pat.) Griffon.

Figure legends

Fig. 1 Agarwood induced by the branch-cutting method was used for fungi isolation in the present study. Four layers were separately collected. DL: Decomposing Layer; AL: Agarwood Layer; TL: Transition Layer and NL: Normal Layer.

Fig. 2 The numbers of isolated strains from different layers. The species of *Lasiodiplodiatheobromae* was dominantly spreading in each layer.

Fig. 3 Agarwood induced by the fermentation liquid of isolated fungi. (A) Wood inoculated with: 1, the fermentation liquid of NAF6; 2, culture media; 3, the fermentation liquid of AF12; 4, the fermentation liquid of AF4; 5, the patented agarwood inducer; 6, the fermentation liquid of AF21. (B) Plants that were inoculated with the fermentation liquid of fungi showed yellow leaves; (C) colony of AF4; (D) colony of AF12; (E) colony of NAF6; (F) colony of AF21; (G) thin layer chromatogram of extracts from the wood inoculated with: 1, the fermentation liquid of AF21; 2, the patented agarwood inducer; 3, the fermentation liquid of AF4; 4, the fermentation liquid of AF12; 5, ST; 6, 7-dimethoxy-2-(2-phenylethyl) chromone, and 6 culture media.

Figure legends
Fig. 1 Agarwood which was induced by branch-cutting method was used to isolate fungi in the present study and the four layers were separately collected (DL: Decomposing Layer; AL: Agarwood Layer; TL: Transition Layer and NL: Normal Layer).

Fig. 2 Number of isolated strains from the different layers. The species of *Lasiodiplodia theobromae* was dominantly spreading in each of the layers.
Fig. 3 Agarwood induced by the fermentation liquid of isolated fungi. A: woods inoculated with 1 the fermentation liquid of NAF6, 2 culture media, 3 the fermentation liquid of AF12, 4 the fermentation liquid of AF4, 5 patented agarwood inducer, 6 the fermentation liquid of AF21; B: plants inoculated with the fermentation liquid of fungi showing yellow leaves; C: colony of AF4; D: colony of AF12; E: colony of NAF6; F: colony of AF21; G: Thin layer chromatogram of extracts from woods inoculated with 1 the fermentation liquid of AF21, 2 patented agarwood inducer, 3 the fermentation liquid of AF4, 4 the fermentation liquid of AF12, 5 ST: 6, 7-dimethoxy-2-(2-phenylethyl) chromone, and 6 culture media.