A Void Growth Model Considering the Bauschinger Effect and Its Application to Spall Fracture

CHEN Qian-Yi(陈千一)1,2, LIU Kai-Xin(刘凯欣)1,2*

1LTCS and Department of Mechanics & Aerospace Engineering, College of Engineering, Peking University, Beijing 100871
2Center for Applied Physics and Technology, Peking University, Beijing 100871

(Received 10 March 2011)

A void growth model considering the Bauschinger effect (BE) is proposed for ductile materials sustaining impact loading. Numerical simulations of two high-velocity impact problems are carried out by our newly developed Eulerian programs. The proposed model is tested by a plate impact problem and a qualitative agreement with the experimental data when the BE is considered. The proposed model reveals that the BE has an obvious effect on the spall process.

PACS: 46.15.-x, 62.20.mm, 64.30.Ef DOI: 10.1088/0256-307X/28/6/064602

The spall fracture of ductile material is considered as a sequence of nucleation, growth, coalescence of microscopic voids.[1] Most publications about the spall model are dedicated to improve the void growth model. Johnson[2] first introduced the model, developed by Carroll and Holt,[3] to describe the void growth process. He extended the previous work by adding the strain rate contribution to the yield stress of the matrix material and proved that the void growth can be modeled as a fully plastic process. Perzyna[4] improved Johnson’s work by including a linear strain hardening term in the yield stress expression. Eftis et al.[5] modified Perzyna’s model by considering a nonlinear isotropic hardening law that allows for saturation of the hardening with increase of strain. Cortes[6] analyzed in detail the influence of material viscosity, strain hardening and thermal softening on the tensile fracture behavior and concluded that the thermal softening has a negligible influence on the yield stress. Eftis et al.[6] summarized the previous works and proposed a constitutive-microdamage model which is fairly comprehensible.

Note that the spall is caused by tension after compression, the Bauschinger effect (BE) may exist during the spall process. Thakur et al.[7] developed a testing method to investigate the BE under dynamic loading. They observed that metals do not exhibit a BE in the quasi-static state may show a BE at very high strain rate. Hermann et al.[8] added the BE to the constitutive model to simulate the plate impact experiment and obtained improved match between simulation and experiment. However, no literature about the spall model considering the BE has been published yet.

In this Letter, a void growth model taking into account the BE is proposed. In order to describe the BE, a linear kinematic model is added to the Tresca yield condition. The proposed model is introduced into our newly developed Eulerian codes.[9] Numerical simulations of two high-velocity impact problems with spall fractures are carried out and compared to the experimental data.

![Fig. 1. Illustration of the void growth model: (a) cubic element with a random distribution of voids, (b) spherical void surrounded by a matrix material.](image)

The derivation begins with the consideration of a representative volume element containing a random distribution of voids, as illustrated in Fig.1(a). All the voids are assumed to be spherical. Imagine a uniform mean stress \(\sigma \) acting over the surface of this element. Since the cross-sectional area occupied by the voids does not support the stress, we have

\[
A \sigma = A_s \sigma_s,
\]

where \(A \) is the total area, containing the voids, of the cross section, \(\sigma \) is the mean stress acting on \(A \). \(A_s \) is the solid material part on plane \(A \) and \(\sigma_s \) is the mean stress on \(A_s \). For a random distribution of voids shapes and sizes, the following relation is acknowledged

\[
A/A_s = V/V_s,
\]

where \(V \) is the whole volume of the element and \(V_s \) is the volume of the solid material. Then we have

\[
\sigma_s = (V/V_s) \sigma = \alpha \sigma,
\]

where \(\alpha \) is defined as distortion ratio. Around each of the voids in the distended material, there is a mean

*Supported by the National Natural Science Foundation of China under Grant Nos 10732010, 10972010 and 11028206.
**Correspondence author. Email: kliu@pku.edu.cn
© 2011 Chinese Physical Society and IOP Publishing Ltd
stress \(\sigma_x \). If this stress is big enough in tension, the voids will grow by plastic deformation of the surrounding material. Another variable, VVF \(\xi \), is also frequently used in the published literatures. According to its definition, the following relation is obtained

\[
\xi = \frac{V - V_s}{V} = 1 - \frac{1}{\alpha}.
\]

Considering a spherical void of radius \(a \) in a sphere of radius \(b \) where the outer boundary is subjected to the mean stress \(\sigma_m \), as shown in Fig. 1(b), we express the equation of motion for the problem in the spherical coordinates as

\[
\frac{\partial \sigma_r}{\partial r} + \frac{2}{r} (\sigma_r - \sigma_\theta) = \rho \ddot{r},
\]

where \(\sigma_r \) is the radial stress, \(\sigma_\theta \) is the tangential stress, \(\rho \) is the density of the solid material and \(\ddot{r} \) is the radial acceleration. The boundary conditions are

\[
\sigma_r(a, t) = 0, \sigma_r(b, t) = \sigma_s = \alpha \sigma, \tag{6}
\]

where \(\alpha = b^2/(b^2 - a^2) \). The inertial term \(\rho \ddot{r} \) in Eq. (5) is usually neglected.\(^{[1]}\) Integrating Eq. (5) from \(a \) to \(b \), we have

\[
\alpha \sigma + \int_a^b \frac{2}{r} (\sigma_r - \sigma_\theta) \, dr = 0. \tag{7}
\]

According to the viscoplastic constitutive theory, the yield surface of the material is given by

\[
f = \| \dot{\sigma} - \dot{X} \| - R - \kappa = 0, \tag{8}
\]

where \(\dot{X} \) is the back-stress for kinematic hardening, \(R \) is the increment of the yield surface size for isotropic hardening and \(\kappa \) is the initial yield surface size. The linear kinematic hardening model proposed by Prager and described in Ref. [8] is adopted here to account for the BE. The evolution of the back-stress \(\dot{X} \) is collinear with the evolution of the plastic strain

\[
\dot{X} = \frac{2}{3} h \dot{\varepsilon}^p, \tag{9}
\]

where \(h \) is the linear hardening modulus determined by the slope of the \(\sigma - \varepsilon^p \) curve. The Tresca yield condition is adopted,

\[
\frac{\sigma_\theta - \sigma_r}{2} = \tau_s, \tag{10}
\]

where \(\tau_s \) is the shear yield stress. For most materials, \(\sigma_s = \sqrt{3} \tau_s \), where \(\tau_s \) is the tensile yield stress. The tensile yield stress is calculated by the simplified form of the Johnson–Cook (JC) model.\(^{[12]}\) From Eq. (8), we obtain the expression

\[
\frac{\sqrt{3}}{2} \left[\left(\sigma_\theta - \frac{2}{3} h \varepsilon^p \right) - \left(\sigma_r - \frac{2}{3} h \varepsilon^p \right) \right] = \sigma_s = \kappa + R = A + B (\varepsilon^p)^n + \eta \varepsilon^p, \tag{11}
\]

where \(A, B \) and \(n \) are the material parameters of the JC model, \(\eta \) is the viscosity of the material, \(\varepsilon^p \) is the equivalent plastic strain and \(\varepsilon^p \) is the equivalent plastic strain rate.

The equivalent plastic strain and strain rate are expressed as

\[
\varepsilon^p = \frac{2}{3} [\varepsilon^p - \varepsilon^p] = \frac{2}{3} \left[\left(\frac{\partial u}{\partial r} - \frac{u}{r} \right) \right],
\]

\[
\dot{\varepsilon}^p = \frac{2}{3} \frac{d}{dt} \left[\frac{\partial u}{\partial r} - \frac{u}{r} \right]. \tag{12}
\]

Then Eq. (11) can be written as

\[
\sigma_\theta - \sigma_r = (2/\sqrt{3}) [A + B (\varepsilon^p)^n + \eta \varepsilon^p] - h \varepsilon^p. \tag{13}
\]

Substituting Eq. (13) into Eq. (7), we have

\[
\alpha \sigma = \frac{2}{\sqrt{3}} \int_a^b \frac{2}{r} \left[A + B (\varepsilon^p)^n + \eta \varepsilon^p \right] \, dr - \int_a^b \frac{2}{r} h \varepsilon^p \, dr. \tag{14}
\]

The radial displacement can be calculated by

\[
\dot{u} = r - r_0 = \left[r^3 + B(t) \right]^{1/3}. \tag{15}
\]

Substituting Eqs. (12) and (15) into Eq. (14) and finishing the integration, we have

\[
\alpha \sigma = \frac{4 \sqrt{3}}{9} \left[A \ln \left(\frac{\alpha}{\alpha - 1} \right) - B \left(\frac{2}{3} \right)^n \Pi(\alpha) \right] - \frac{4}{3} h |\Gamma(\alpha)|
\]

\[
+ \frac{8 \sqrt{3}}{27} \eta \left(\frac{\alpha}{\alpha - 1} \right)^{1/3} |\Gamma(\alpha)|, \tag{16}
\]

where

\[
\Pi(\alpha) = \int_{B(t)/a^3}^{B(t)/b^3} \frac{1}{x} \chi(1 + \chi)^{-2/3} \, d\chi, \tag{17}
\]

\[
G(\alpha) = \left(\frac{\alpha_0 - 1}{\alpha - 1} \right)^{1/3} - \left(\frac{\alpha_0}{\alpha} \right)^{1/3},
\]

\[
F(\alpha) = (\alpha - 1) \left(\frac{\alpha}{\alpha_0} \right)^{2/3} - \alpha \left(1 - \frac{\alpha - 1}{\alpha_0 - 1} \right)^{2/3}. \tag{18}
\]

When \(\dot{\alpha} \) in Eq. (16) approaches zero, the threshold stress for void growth is obtained,

\[
\sigma_g = \frac{4 \sqrt{3}}{9} \frac{1}{\alpha} \left[A \ln \left(\frac{\alpha}{\alpha - 1} \right) - B \left(\frac{2}{3} \right)^n \Pi(\alpha) \right]
\]

\[
- \frac{4}{3} h \frac{1}{\alpha} |\Gamma(\alpha)|. \tag{19}
\]

Then Eq. (16) can be written as

\[
\alpha(\sigma - \sigma_g) = \frac{8 \sqrt{3}}{27} \eta \frac{\alpha}{\alpha - 1} |\Gamma(\alpha)|. \tag{20}
\]

Expressing Eq. (20) in terms of the VVF, we have

\[
\sigma - \sigma_g = \frac{8 \sqrt{3}}{27} \eta F(\xi) \dot{\xi}, \tag{21}
\]
where

\[
\sigma_g = \frac{4\sqrt{3}}{9} (1 - \xi) [A \ln(1/\xi) - B(2/3)^n \Pi(\xi)] \\
- \frac{4}{3} h (1 - \xi) G(\xi),
\]

\[
\Pi(\xi) = \int_{\chi_1}^{\chi_2} \frac{1}{\chi} |\chi(1 + \chi)^{-2/3}| d\chi,
\]

\[
\chi_1 = \frac{1}{\xi} (\frac{\xi_0 - \xi}{1 - \xi_0}), \quad \chi_2 = \frac{\xi_0 - \xi}{1 - \xi_0},
\]

\[
G(\xi) = \left(\frac{1 - \xi}{1 - \xi_0} \right)^{1/3} \left[1 - \left(\frac{\xi_0}{\xi} \right)^{1/3} \right],
\]

\[
F(\xi) = \left(\frac{1 - \xi_0}{1 - \xi} \right)^{2/3} \left[\frac{1}{\xi} \left(\frac{\xi_0}{\xi} \right)^{2/3} - 1 \right].
\]

The void growth rate is expressed as

\[
\dot{\xi} = \frac{27}{8\sqrt{3}} \frac{1}{\eta F(\xi)} (\sigma - \sigma_g) e^{\phi \xi},
\]

where \(e^{\phi \xi}\) is a modification proposed by Eftis et al.\(^5\) for the void interaction during the coalescence process. Most material parameters in Eq. (2) can be obtained from the JC model and only one additional parameter \(h\) is needed to describe the BE. It is convenient to implement numerical simulations by the proposed model.

The proposed void growth model is introduced into our newly developed Eulerian codes.\(^{11,13}\) A novel representation of crack by level set proposed by us\(^{11}\) is adopted to perform the formation and propagation of the crack. The VVF accounts for the spall fracture and its critical value is \(\xi_c = 0.3\). In addition, a limit strain of 2.5 is used to describe the shear fracture near the crater.\(^7\)

Table 1. Material parameters of the target plates: aluminum 1100 and oxygen-free high conductivity (OFHC) copper.

<table>
<thead>
<tr>
<th></th>
<th>(\rho)</th>
<th>(K_0)</th>
<th>(G_0)</th>
<th>(A)</th>
<th>(B)</th>
<th>(n)</th>
<th>(\eta)</th>
<th>(\xi_0)</th>
<th>(\xi_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>8930</td>
<td>130</td>
<td>43.33</td>
<td>90</td>
<td>292</td>
<td>0.31</td>
<td>1.0</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>Al(_{1100})</td>
<td>2770</td>
<td>78.6</td>
<td>27.1</td>
<td>150</td>
<td>170</td>
<td>0.34</td>
<td>1.0</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The plate impact problem is considered as a benchmark for the spall fracture. One of the plate impact experiments performed by Russian scientists\(^{14}\) is simulated. The experiment consists of a 2-mm-thick aluminum plate acting as a high-speed projectile and a 12-mm-thick copper plate. The flyer plate is at a speed of 450 m/s and the target plate is at rest before impact. The material parameters of the target plate can be found in Table 1. The comparison between the numerical results and the experimental data of particle velocity history at the free surface is shown in Fig. 2. According to the experimental plot,\(^{14}\) time \(t = 0\) is relevant to the moment when particles on the back side of the target start to move. The particles at the free surface are initially stationary. It can be observed from Fig. 2 that the velocity history obtained by simulation essentially coincides with the experimental profile.

Fig. 2. Comparison of the free surface velocity profiles between the experiment and the simulation.

Fig. 3. Comparison of the evolution of VVF distribution inside the target plate between the numerical results considering and not considering the BE. Results (a), (b) and (c) do not include the BE and the initial yield strength is 40 MPa. Results (d), (e) and (f) include the BE and the initial yield strength is 150 MPa. Here (a) and (d) are taken at \(t = 5\) \(\mu\)s, (b) and (e) at \(t = 10\) \(\mu\)s, (c) and (f) at \(t = 15\) \(\mu\)s.

Then a more complicated problem, of which an aluminum 1100 target plate is impacted by a spherical soda-lime glass projectile at a velocity of 6.0 km/s,\(^{15}\) is simulated. The thickness of the target plate is 12.5 mm. The diameter of the projectile is 3.2 mm. In order to investigate the influence of the BE on the spall process, the problem is simulated by both models with and without the BE term. Investigation is also made on the initial yield strength of Al\(_{1100}\) since different values are found in different literature.\(^{15,16}\) The material parameters of the target plate are listed...
in Table 1.

Figure 3 presents the VVF distribution inside the target plate at \(t = 5, 10 \) and \(15 \mu s \). The plots on the left side are the numerical results not considering the BE and with the 40 MPa initial yield strength, while the plots on the right side are the results considering the BE and with the 150 MPa initial yield strength. The crack on the right side is obviously longer than the one on the left side. The right crack keeps expanding from 5 \(\mu s \) to 15 \(\mu s \). We may deduce that the crack is produced by two factors: The main part which occupies the crack’s most length is caused by spall; the shorter part at the corner of the crack is torn apart by the fast-moving scab. The left crack, however, hardly propagates after 5 \(\mu s \) when the spall is finished. The tensile strength of the material at the crack corner is weakened since the material has been compressed into plastic region. The material at the corner is not ripped since the BE is not considered. The craters on the left side are larger than the ones on the right side since the initial yield strength of the material on the left side is smaller, which makes the material softer.

![Contour plot of the equivalent plastic strain at \(t = 15.0 \mu s \). Geometric parameters indicating key deformation characters are denoted.](image)

The contour plot of the equivalent plastic strain at \(t = 15 \mu s \) is shown in Fig. 4. The highest strain appears near the crater. The plastic strain near the spall plane on the scab is also quite high, which indicates that the material on the spall plane goes into the plastic region before spall. A fracture surface caused by shear deformation is observed at the prominent lip of the crater. The equivalent plastic strain at the lip is close to the limit strain 2.5. The geometric parameters which describe the key deformation characters of the plate after impact are marked in Fig. 4. The numerical results are compared with the experiment in Table 2. The result calculated by the model with the BE agrees well with the experimental data, including the crater size and the crack length. The crack is much shorter than the experiment when the BE is not considered. The numerical results prove the influence of the BE on the spall process. However, the scab thickness is smaller and the crack open width is much larger than the experiment. To improve this, a more precise kinematic hardening model is needed.

Table 2. Comparisons of damage features between the experiment and the simulations.

<table>
<thead>
<tr>
<th></th>
<th>a (mm)</th>
<th>b (mm)</th>
<th>c (mm)</th>
<th>d (mm)</th>
<th>e (mm)</th>
<th>f (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.9</td>
<td>7.5</td>
<td>4.8</td>
<td>4.2</td>
<td>1.4</td>
<td>8.6</td>
</tr>
<tr>
<td>b</td>
<td>5.6</td>
<td>7.4</td>
<td>4.7</td>
<td>5.0</td>
<td>1.1</td>
<td>8.0</td>
</tr>
<tr>
<td>c</td>
<td>6.6</td>
<td>9.0</td>
<td>3.7</td>
<td>4.7</td>
<td>1.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

In conclusion, we have proposed a void growth model which considers the BE. Numerical simulation of a plate impact problem is carried out and the results are qualitatively in agreement with the experimental data. Then the impact process of an Al\(_{1100}\) target plate by a spherical glass projectile at a velocity of 6.0 km/s is simulated. The influence of the BE on the spall process is investigated by numerical analyses. Better agreement with the experiment is obtained when the BE is considered. The proposed model reveals the effect of the BE on the spall process, which is difficult to test by experiment.

References

[16] 2005 AUTODYN material library
060201 Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks
CHENG Hong-Yan, YANG Jun-Zhong

060202 N-Soliton Solutions for the Four-Potential Isopectral Ablowitz-Ladik Equation
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan

060203 A Direct Linearization Method of the Non-Isospectral KdV Equation
ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan

060204 Asymptotic Behavior of Periodic Wave Solution to the Hirota-Satsuma Equation
WU Yong-Qi

060205 A New Multi-Symplectic Scheme for the KdV Equation
LV Zhong-Quan, XUE Mei, WANG Yu-Shun

060206 Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier-Stokes/Phase-Field System in \mathbb{R}^2
ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang

060207 Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev-Petviashvili Equation
WU Jian-Ping

060301 Perfect Entanglement Teleportation via Two Parallel W State Channels
WANG Mei-Yu, YAN Feng-Li

060302 Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems
YAN Jun-Yan, WANG Lin-Cheng, YI Xue-Xi

060303 A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices
HUANG Bei-Bing, WAN Shao-Long

060304 Experimental Violation of Multiple-Measurement Time-Domain Bell’s Inequalities
TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can

060305 Non-Markovian Effect on the Classical and Quantum Correlations
XU Guo-Fu, TONG Dian-Min

060306 Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field
FAN Jing-Han, GU Qiang, GUO Wei

060307 Control of the Entanglement between Two Josephson Charge Qubits
LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian

060308 Parameters for Cold Collisions of Lithium and Caesium Atoms
Jamieson M. J., Ouerdane H.

060501 Fractal Basins in the Lorenz Model
I. Djellit, J. C. Sprott, M. R. Ferchichi

060502 A Rotating Pendulum Linked by an Oblique Spring
CAO Qing-Jie, HAN Ning, TIAN Rui-Lan

060701 Flat Crystal x-ray Spectrometer for Quantitative Spectral Measurement in the 2–5 keV Region
ZHAO Yang, WEI Min-Xi, DENG Bo, ZHU Tuo, HU Zhi-Min, XIONG Gang, SHANG Wan-Li, KUANG Long-Yu, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min

061201 A New Model for Quark Mass Matrix
JIANG Zhi-Wei
061401 \(K^+KN\) and \(K^+KN\) Molecular States with \(I = 1/2, 3/2\) and \(J^P = 1/2^+\) Studied with Three-Body Faddeev Calculations
JIA Er-Wei, PANG Hou-Rong

061402 Neutrino Mass from a Higher-Dimensional Operator
NING Guo-Zhu, WU Yuan-Bin

NUCLEAR PHYSICS

062101 The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation
ZHOU Pei, TIAN Wen-Dong, MA Yu-Gang, CAI Xiang-Zhou, FANG De-Qing, WANG Hong-Wei

ATOMIC AND MOLECULAR PHYSICS

063101 Electronic Structures and Spectroscopic Properties of a Novel Iridium (III) Complex with an Ancillary Ligand 2-(4-Trifluoromethyl -2-Hydroxylphenyl)Benzothiazole
LEI Li-Ping, HAO Yu-Ying, FAN Wen-Hao, XU Bing-She

063201 Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain
LÜ De-Sheng, QU Qiu-Zhi, WANG Bin, ZHAO Jian-Bo, LIU Liang, WANG Yu-Zhu

063202 Asymmetry of Photodetachment of \(F^-\) by Few-Cycle Infrared Laser Fields: Laser-Intensity Effects
BAI Li-Hua, HOU Lu-Qiang, CUI Ting-Ting, LIU Yu-Heng, WANG Yan, ZHANG Hui-Fang, DENG Dong-Mei

FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS)

064201 The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space
LI Jun-Chang, PENG Zu-Jie, FU Yun-Chang

064202 The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble
ZHANG Xue, ZHENG Tai-Yu, TIAN Tian, PAN Shu-Mei

064203 Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States
HOU Shen-Yong, YANG Kuo

064204 Refraction Characteristics of Cold Plasma Thin Film as a Left-Handed Metamaterial
Cumali Sabah

064205 Terahertz Waveforms Manipulation by Two Orthogonal-Polarized Femtosecond Pulses
LI De-Hua, MA Jian-Jun, ZHOU Wei, LIU Sheng-Gang

064206 A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials
LI Pei-Ning, LIU You-Wen, MENG Yun-Ji, ZHU Min-Jun

064207 Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal
WEN Jing, JIANG Hong-Bing, YU Jing, YANG Hong, GONG Qi-Huang

064208 Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter
WANG Fei, ZHANG Xin-Liang, YU Yu, XU En-Ming
064209 High-Power Terahertz Radiation Based on a Compact Eudipleural THz-Wave Parametric Oscillator
Li Zhong-Yang, YAO Jian-Quan, LÜ Da, XU De-Gang, WANG Jing-Li, BING Pi-Bin

064210 Green Upconversion Luminescence in Er$^{3+}$/Yb$^{3+}$ Codoped CaWO$_4$ Polycrystals
XU Yan-Ling, ZHAO Hong, WANG Rui, ZHANG Chun-Yu

064211 Comparative Studies on the Laser Damage Resistance of Ta$_2$O$_5$ and Nb$_2$O$_5$ Films Performed under Different Electron Beam Currents
XU Cheng, XU Lin-Min, ZHANG Han-Zhuo, QIANG Ying-Huai, ZHU Ya-Bo, LIU Jiong-Tian, SHAO Jian-Da

064212 A 40-Gbit/s 1-to-2 Photonic Data Distributor Employing a Single Semiconductor Optical Amplifier
ZHANG Yin, DONG Jian-Ji, LEI Lei, HE Hao, HUANG De-Xiu, ZHANG Xin-Liang

064213 Entangling a Series of Trapped Ions by Moving Cavity Bus
ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu

064214 Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40 Gb/s CO-OFDM Systems
QIAO Yao-Jun, LIU Xue-Jun, JI Yue-Feng

064215 The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm
YIN Guo-Bing, LI Shu-Guang, LIU Shuo, WANG Xiao-Yan

064301 A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves
Hyunjo Jeong, Sungjong Cho, Wei Wei

064501 A Pair Correlation Function Characterizing the Anisotropy of Force Networks
SUN Qi-Cheng, JI Shun-Ying

064601 Measuring Stress Distributions of Orthotropic Composite Material in Plane Stress State by the Lock-in Infrared Thermography Technique
LI Xu-Dong, WANG Wei-Bo, LI Yong-Sheng, WU Dong-Liu

064602 A Void Growth Model Considering the Bauschinger Effect and Its Application to Spall Fracture
CHEN Qian-Yi, LIU Kai-Xin

064701 A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method
ZHANG Xu, LIU Jin-Hong, Jonathan W. N.

064702 The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers
WANG Li, LU Xi-Yun

PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES

065201 Space-Resolved Diagnosis for Electron Temperature of Laser-Produced Aluminum Plasma
ZHAO Yang, DENG Bo, XIONG Gang, HU Zhi-Min, WEI Min-Xi, ZHU Tuo, SHANG Wan-Li, LI Jun, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min

CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES

066101 Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes
LI Yong, ZHENG Li-Ping, ZHANG Wei, XU Zi-Jian, REN Cui-Lan, HUAI Ping, ZHU Zhi-Yuan

066102 Ne$^{2+}$ Ion Irradiation Induced Swelling Effects in Pyrochlore Ho$_2$Ti$_2$O$_7$ by Using a GIXRD Technique
LI Yu-Hong, XU Chun-Ping, GAO Chao, WANG Zhi-Guang

066103 The Phase Transition of Nematic Liquid Crystal Cells Bounded by Surfactant-Laden Interfaces
ZENG Ming-Ying, CUI Wei, TAN Xiao-Qin, WU Chen-Xi
066104 Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes
PAN Rui-Qin

066201 The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires
XIE Shi-Feng, CHEN Shang-Da, SOH Ai-Kah

066801 Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface
DING Tao, SONG Jun-Qiang, LI Juan, CAI Qun

066802 Imaging of the Al Structure of an Ultrathin Alumina Film Grown on Cu-9 at.%Al(111) by STM
ZHANG Yun, YU Ying-Hui, SHE Li-Min, QIN Zhi-Hui, CAO Geng-Yu

066803 Two-Dimensional Cavity Resonant Modes of Si Based Bragg Reflection Ridge Waveguide
CHEN San, Lu Hong-Yan, CHEN Kun-Ji, XU Jun, MA Zhong-Yuan, LI Wei, HUANG Xin-Fan

067101 First-Principles Calculations of the Structural, Electronic and Optical Properties of BaZr_{x}Ti_{1-x}O_{3} (x = 0, 0.25, 0.5, 0.75)
ZHAO Xin-Yin, WANG Yue-Hua, ZHANG Min, ZHAO Na, GONG Sai, CHEN Qiong

067102 A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO_{2}, NaNiO_{2} and NaTiO_{2}
OUYANG Sheng-De, QUAN Ya-Min, LIU Da-Yong, ZOU Liang-Jian

067103 Effect of Water Concentration on the Characterization of Sprayed Cd_{0.5}Zn_{0.5}S Films
Sur S., Öztürk Z., Öztäṣ M., Bedir M., Özdemir Y.

067104 Voronoi Structural Evolution of Bulk Silicon upon Melting
ZHANG Shi-Liang, ZHANG Xin-Yu, WANG Lin-Min, QI Li, ZHANG Su-Hong, ZHU Yan, LIU Ri-Ping

067105 Analysis of Ground-State Zero-Field Splitting for Mn^{2+} in ZnNbOF_{5}·6(H_{2}O) and CoNbOF_{5}·6(H_{2}O)
LI Ju-Fen, KUANG Xiao-Yu

067301 Ground States and Excited States in a Tunable Graphene Quantum Dot
WANG Lin-Jun, CAO Gang, TU Tao, LI Hai-ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping

067302 Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model
LIU Zhao-Sen, Schovský Vladimír, Diviš Martin

067303 Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions
LIU Yu, CHENG Fang

067304 Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules
TIAN Peng, HUANG Li-Rong, YUAN Xiu-Hua, HUANG De-Xiu

067401 Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays
WANG Zheng, FAN Bin, ZHAO Xin-Jie, YUE Hong-Wei, HE Ming, JI Lu, YAN Shao-Ling, FANG Lan, Klushin A. M.

067402 Fabrication and Properties of Aligned Sr_{0.8}K_{0.4}Fe_{2}As_{2} Superconductors by High Magnetic Field Processing
GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei, AWAIJ Sato, Iwakura Kazuo

067501 Spin Dynamics of B2 and L2-1-Ordered Co_{x}FeAl_{0.7}Si_{0.3} Heusler Alloy Films
YI Ming, CHEN Zhi-Feng, CHEN Da-Xin, Sukegawa Hiroshi, INOMATA Kolehiro, LAI Tian-Shu, ZHOU Shi-Ming
067502 Effect of a Boron Underlayer on the Ordering and Orientation of Sputtered FePt Film
LI Yong-Le, HUANG An-Ping, FENG Tang-Fu, CHEN Qiang, SHU Xiao-Lin, CHEN Jun-Yang,
CHEN Zi-Yu

067503 Enhanced Magnetic and Ferroelectric Properties and Current-Voltage Hysteresis by
Addition of La and Ti to BiFeO$_3$ on 0.7%Nb-SrTiO$_3$
CHANG Hong, ZHAO Yong-Gang

067701 Ca$_{0.5}$Sr$_{0.5}$TiO$_3$-Modified KNN-Based Lead-Free Piezoceramics with a Wide Temperature
Usage Span
DU Juan, WANG Jin-Feng, ZANG Guo-Zhong, YI Xiu-Jie

067702 Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain
Epitaxial BiFeO$_3$ Films
LIU Yang, PENG Xing-Ping

067801 Cathode Formed by Thermal Evaporation of Ba:Al Alloy and Estimations of Barrier Height
in an Organic LED
DING Lei, ZHANG Fang-Hui

067802 Subband Light Emission from Phosphorous-Doped Amorphous Si/SiO$_2$ Multilayers at Room
Temperature
SUN Hong-Cheng, XU Jun, LIU Yu, MU Wei-Wei, XU Wei, LI Wei, CHEN Kun-Ji

067803 Transmission through Ag/Organic Multilayers Using Continuous and Island Metal Films
LI Heng, ZHENG Ning

067804 Ultrafast Solvation Dynamics of Subtilisin-Polyethylene Glycol Interaction for Protein
Crystallization
DING Qing, MENG Geng, WANG Shu-Feng, ZHENG Xiao-Feng, YANG Hong, GONG Qi-Huang

067805 Monitoring Hydrogen Sulfide Using a Quantum Cascade Laser Based Trace Gas Sensing
System
WANG Ling-Fang, SHARPLES Thomas-Roben

067806 Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled
Distributed Bragg Reflectors
CHEN Yi-Xin, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun

067807 Effect of Mg Doping on the Photoluminescence of GaN:Mg Films by Radio-Frequency
Plasma-Assisted Molecular Beam Epitaxy
SUI Yan-Ping, YU Guang-Hui

068102 Epitaxy of an Al-Droplet-Free AlN Layer with Step-Flow Features by Molecular Beam
Epitaxy
PAN Jian-Hai, WANG Xin-Qiang, CHEN Guang, LIU Shi-Tao, FENG Li, XU Fu-Jun, TANG Ning,
SHEN Bo

068401 A Dual-Band Coaxial Waveguide Mode Converter for High-Power Microwave Applications
ZHANG Qiang, YUAN Cheng-Wei, LIU Lie

068501 Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement
in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector
CHEN Bin, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun
068502 Investigation of a GaN Nucleation Layer on a Patterned Sapphire Substrate
WU Meng, ZENG Yi-Ping, WANG Jun-Xi, HU Qiang

068503 Theoretical Explanation and Improvement to the Flare Model of Lithography Based on the Kirk Test
CHEN De-Liang, CAO Yi-Ping, HUANG Zhen-Fen

068701 Approach of Complex Networks for the Determination of Brain Death
SUN Wei-Gang, CAO Jian-Ting, WANG Ru-Bin

068702 Effect of Cisplatin on the Flexibility of Linear DNA
JI Chao, ZHANG Ling-Yun, HOU Xi-Miao, DOU Shuo-Xing, WANG Peng-Ye

068703 Emergence of Small-World and Limitations to Its Maximization in a Macaque Cerebral Cortical Network
ZHAO Qing-Bai, LIAO Meng-Jie, CHEN Qi-Cai

068901 Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System
ZHAO Zhi-Dan, XIA Hu, SHANG Ming-Sheng, ZHOU Tao

068902 Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information
LI Jun, WU Jun, LI Yong, DENG Hong-Zhong, TAN Yue-Jin

068903 Local Natural Connectivity in Complex Networks
SHANG Yi-Lun

ERRATA AND OTHER CORRECTIONS
XU Shi-Xiang