An improved CE/SE scheme for numerical simulation of gaseous and two-phase detonations

Gang Wang a,b, Deliang Zhang a,b, Kaixin Liu a,*, Jingtao Wang a

a LTCS and College of Engineering, Peking University, Beijing, China
b LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

1. Introduction

Numerical simulations of detonation have been improved immensely in recent 25 years with the development of both computational methods and available computer facilities. There are two main challenges in detonation simulations. One is to calculate the process of energy release in reaction flow; the other one is to capture the strong discontinuity in detonation waves. Successful solutions to above two challenges depend on the development of chemical reaction models and numerical schemes, respectively.

Many chemical reaction models have been used in detonation simulations, such as the C–J (Chapman–Jouguet) model [1], the one-step reaction model [2,16], the two-step reaction model [3], the detailed chemical reaction model [4] and Sichel's two-step reaction model [5]. Algorithm, such as famous TVD (Total Variation Diminishing) scheme which treats discontinuity surface well, has been applied to detonation simulations [6]. Owing to above development, numerical simulations have been widely used to solve detonation problems in both academic explore and engineering practice. However, authors have noted that many numerical schemes lacked comprehensive verification before being applied, especially for CE/SE method (space-time conservation element and solution element method) [7,8].

CE/SE method proposed originally by Chang [9,10] is a new high resolution CFD (Computational Fluid Dynamics) method for conservation laws. It substantially differs from other traditional numerical methods by possessing many features, e.g. unified treatment of space and time, new shock-capturing strategy, satisfaction of both local and global flux conservations in space and time by introducing conservation elements (CEs) and solution elements (SEs) etc. Simplicity, generality and accuracy are the three main advantages of the CE/SE method [9]. The construction of a CE/SE scheme includes the following steps: changing governing equations from differential form to integral form, dividing space-time region as CEs and SEs, approximating flux vectors in SEs by Taylor expansions, obtaining relation equations between the space derivatives and the time derivatives, and finally integrating the governing equations on CEs. The CE/SE method has gained great successes in simulations of jet nozzle [11] and aero-acoustics [12], steady viscous flows [13], MHD problems [14], multi-material elastic–plastic flows [15]. Especially, CE/SE method has been applied to detonation simulations based on one-step chemical reaction model [2,16] and detailed chemical reaction model [7,17], since it is able to capture strong discontinuity surface accurately. The original CE/SE method also has some disadvantages, such as complicated mesh structure for two-dimensional situation, and the shortage of high-accuracy schemes. Zhang et al. [18] have proposed quadrilateral and hexahedral meshes for two and three-dimensional CE/SE schemes and obtained satisfying results. Liu et al. [19] have proposed one-dimensional high-accuracy CE/SE schemes and analyzed the stability of the second-order CE/SE scheme.

The aim of present work is to construct a simple and accurate two-dimensional CE/SE scheme for both gaseous and two-phase
detonation simulations. A new structure of CEs and SEs based on rectangular mesh and the second-order Taylor expansion in SEs is proposed. Three common chemical reaction models including two-step reaction model, detailed chemical reaction model and Sichel’s two-step reaction model are used in gaseous detonation. A two-fluid model is used for simulating two-phase (gas–droplet) detonation. To verify the accuracy of the improved CE/SE scheme, shock reflections, gaseous planar detonations, Mach reflection of cellular detonations and two-phase planar detonations were simulated, respectively. All numerical results were compared with the corresponding experimental and theoretical results in detail.

2. Chemical and physical models

2.1. Chemical reaction models

Many chemical reaction models, such as the C–J model [1], the one-step reaction model [2], the two-step reaction model [3], the detailed chemical reaction model [4], Sichel’s two-step reaction model [5] and some reduced chemical reaction models, have been applied to numerical simulations of detonation waves. The C–J model has an obvious limitation due to the infinite reaction rate, though it is widely used for estimating the average properties of detonation. To verify the accuracy of the improved CE/SE scheme, shock reflections, gaseous planar detonations, Mach reflection of cellular detonations and two-phase planar detonations were simulated, respectively. All numerical results were compared with the corresponding experimental and theoretical results in detail.

2.2. Governing equations

Governing equations for a gaseous detonation problem are two-dimensional Euler equations

\[
\begin{align*}
\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} &= S, \\
\end{align*}
\]

where \(U \) is a vector of conserved variables, \(E \) and \(F \) are vectors of fluxes, and \(S \) is a vector of source terms.

For two-step reaction model and Sichel’s two-step reaction model, \(U = (\rho, \rho u, \rho v, E, \rho \alpha, \rho \beta)^T, E = (\rho u, \rho u^2 + p, \rho u v, (E + p)u, \rho v^2, \rho u v)^T, F = (\rho u, \rho v, \rho v^2 + p, (E + p)u, \rho u v, \rho v^2)^T, S = (0, 0, 0, 0, \omega_p, \omega_q)^T, \) and for detailed chemical reaction model, \(U = (\rho, \rho u, \rho v, E)^T, E = (\rho u, \rho u^2 + p, \rho u v, (E + p)u)^T, F = (\rho u, \rho u v, \rho v^2 + p, (E + p)u)^T, S = (\omega_p, \omega_q)^T, \) where \(\rho \) is the mass density, \(p \) the pressure, \(T \) the temperature, \(k \) the gas constant, \(Q \) the heat release parameter, \(\alpha \) and \(\beta \) the constants of reaction rates, and \(E_p \) and \(E_q \) the activation energies.

The detailed chemical reaction model is extensively used to describe the transformation of reactants into products at the molecular level through a large number of elementary steps. Concentrations of reaction rates, and elementary chemical equations and corresponding model parameters, where \(A_p, n_p \) and \(E_{p_h} \) are constant of reaction rate, temperature index and activation energy of the ith elementary reaction step, respectively. Equations for reaction rates can be found in reference [6,22].

Sichel et al. [5] proposed a new two-step reaction model, which estimates species densities approximately and presents a generic Arrhenius form for the exothermic reaction rate \(\omega_p \). Sichel’s two-step reaction model supposes that all mass percentages vary linearly with respect to the progress parameter of exothermic reaction \(\beta \). So the mass percentage of the ith species, \(C_i \), can be gained as

\[
C_i = (CR_i - CP_i) \beta + CP_i, \quad (3)
\]

where \(CR_i \) and \(CP_i \) are the mass fractions of the ith species in the initial reactant and balanced product, respectively. The rate of exothermic reaction \(\omega_p \) is

\[
\omega_p = \begin{cases} 0, & (1 - \beta) < a \times \exp \left(-\frac{x}{b}\right) + c, \\ \alpha > 0, \end{cases} \quad (4)
\]

where \(a, b, c \) are coefficients.

Table 1

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\Lambda_i)</th>
<th>(n_i)</th>
<th>(E_{p_h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 + O2 = 2OH</td>
<td>1.70 \times 10^{13}</td>
<td>0.0</td>
<td>47,780</td>
</tr>
<tr>
<td>OH + H2 = H2O + H</td>
<td>1.17 \times 10^{10}</td>
<td>1.3</td>
<td>3626</td>
</tr>
<tr>
<td>O + OH = O2</td>
<td>4.00 \times 10^{-14}</td>
<td>-0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>O + H2 = OH + H</td>
<td>5.06 \times 10^{-14}</td>
<td>2.7</td>
<td>6290</td>
</tr>
<tr>
<td>H + G2 + M = H2O + M</td>
<td>3.61 \times 10^{-14}</td>
<td>-0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>OH + HO2 = H2O + O2</td>
<td>7.50 \times 10^{-22}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H + HO2 = 2OH</td>
<td>1.40 \times 10^{-24}</td>
<td>0.0</td>
<td>1073</td>
</tr>
<tr>
<td>O + HO2 + O = OH</td>
<td>1.40 \times 10^{-24}</td>
<td>0.0</td>
<td>1073</td>
</tr>
<tr>
<td>2OH + O = H2O</td>
<td>6.00 \times 10^{-14}</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>H + H + M = H2 + M</td>
<td>1.00 \times 10^{-23}</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H + H + H2 = H2 + H2</td>
<td>9.20 \times 10^{-26}</td>
<td>-0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>H + H + H2O = H + H2O</td>
<td>6.00 \times 10^{-26}</td>
<td>-1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>H + OH + M = H2O + M</td>
<td>6.20 \times 10^{-26}</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H + O + M = OH + M</td>
<td>6.20 \times 10^{-26}</td>
<td>-6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>O + O + M = O2 + M</td>
<td>1.89 \times 10^{-23}</td>
<td>0.0</td>
<td>-1788</td>
</tr>
<tr>
<td>H + HO2 + H2O + O2</td>
<td>1.25 \times 10^{-13}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>HO2 + HO2 + H2O + O2</td>
<td>2.00 \times 10^{-12}</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H2O2 + M = 2OH + M</td>
<td>1.30 \times 10^{-12}</td>
<td>0.0</td>
<td>45,500</td>
</tr>
<tr>
<td>H2O2 + H + HO2</td>
<td>1.60 \times 10^{-12}</td>
<td>0.0</td>
<td>3800</td>
</tr>
<tr>
<td>H2O2 + OH + HO2</td>
<td>1.00 \times 10^{-13}</td>
<td>0.0</td>
<td>1800</td>
</tr>
</tbody>
</table>

Third-body effect coefficients: (5) H2O = 18.6, H2 = 2.86; (10) H2O = 0, H2 = 0; (13) H2O = 5.0; (14) H2O = 5.0, others = 1.0.

\[
E_p = \frac{p}{\gamma - 1} + \frac{\rho \left(u^2 + v^2 \right)}{2} + p \rho Q, \quad (6)
\]

for two-step reaction model, and

\[
E = \frac{p \gamma h}{\gamma - 1} + \frac{\rho \left(u^2 + v^2 \right)}{2}, \quad (7)
\]

for detailed chemical reaction model and Sichel’s two-step reaction model, respectively. Here, \(\gamma \) is the specific heat ratio, \(h \) the enthalpy calculated by the thermochemical relation \(h = h(p, \gamma) \) [22], and \(p \) the pressure calculated by the state equation of perfect gas \(p = pRT \).

In detonation simulations, the scale gap between characteristic time of chemistry and that of flow is usually significant and must be considered specifically. This difficulty is so called “stiffness.” The magnitude of stiffness in a problem can be weighted by Damkohler number \(Da = \tau_f / \tau_c \), where \(\tau_f \) and \(\tau_c \) are the characteristic time scale...
of flow and chemistry, respectively. Decoupling method is applied to avoid the difficulty of stiffness in current work. That means a complete computing cycle consists of a flow step and thirty reaction steps, if Da is equal to 30.

2.3. Two-fluid model

Two-phase system dealing with gas–fuel detonation studies is a mixture including gas–droplet, gas–film (layer) and gas–dust. Compared with gaseous detonations, complex interaction between two phases is one of the main difficulties in numerical simulation of a two-phase detonation. In this paper, a two-fluid model is introduced for treating gas–droplet detonations.

It is assumed that the characters of a considered gas–droplet system as follows: the flow is unsteady; the initial temperature of the gas and the droplets is the same; the radii of droplets are uniform; the total volume of droplets can be ignored compared with the volume of gas; the interactions between droplets are ignored; when the fuel reaches the gaseous state, chemical reactions occur and accomplish immediately; the chemical energy is absorbed only by gas, which is considered as ideal.

Under above assumptions, the governing equations for both gas phase and droplet phase are Eq. (5), and for gas phase, $U = (\rho, \mu, \nu, E)^T$, $E = (\rho u, \rho u^2 + p$, ρv, $E + p)u)^T$, $F = (\rho v, \rho u v, \rho v^2 + p$, $(E + p)v)^T$, $S = (\rho u_l - F_x + u d_{a2}, -F_y + v d_{a2}, -(u d_{a2} + v d_{a2}) + (u v)\right)^T$ for droplet phase, $U = (\rho d u, \rho d u v, \rho d v, N d)^T$, $E = (\rho d u, \rho d u v, \rho d v, N d)^T$, $F = (\rho d u v, \rho d u v, \rho d v, N d)^T$, $S = (-(u d_{a2} - F_x + u d_{a2}, -F_y + v d_{a2}, 0)^T$, where d_{a2} is the mass density of the droplet phase, u_d and v_d the velocity components of droplet phase, N_d the droplet number per unit volume, l_d the density variations during phase change, and F_x and F_y the force components acting on droplets. The total energy density F is defined as

$$F = \frac{p}{\gamma - 1} + \frac{\rho (u^2 + v^2)}{2}. \tag{8}$$

l_d can be obtained [23,24] as

$$l_d = 12 r N \left[\frac{2 N u_r (T - T_d)}{L} + 4 \pi r^2 \rho d (\frac{\rho d u}{\rho f})^{1/6} (\frac{H_d}{\rho f})^{1/2} |V - V_d|^{1/2} \right]. \tag{9}$$

The first term of Eq. (9) describes the evaporation of fuel drops, and the second term of l_d describes the shattering of fuel drops. The force components on droplets are expressed [23,24] as

$$F_x = 0.5 \pi r^2 C_d \rho |V - V_d| (u - u_d) N, \tag{10}$$

$$F_y = 0.5 \pi r^2 C_d \rho |V - V_d| (v - v_d) N, \tag{11}$$

with

$$|V - V_d| = |(u - u_d)^2 + (v - v_d)^2|^{1/2}, \tag{12}$$

$$Re = \frac{2 \rho r |V - V_d|}{\mu}, \tag{13}$$

$$Nu = 2 + 0.6 Re^{1/2} Pr^{1/3}, \tag{14}$$

$$C_d = \begin{cases} 27 Re^{-0.84}, & Re < 80 \\ 0.27 Re^{0.21}, & 80 \leq Re < 10^4 \\ 2, & Re \geq 10^4 \end{cases}, \tag{15}$$

where r is the radius of fuel droplets, λ the heat conduction coefficient of gas, T_d the temperature of fuel droplets, I the heat of evaporation of fuel droplets, ρ_d the density of fuel droplets, μ and μ_d the viscosity coefficients of gas phase and droplet phase, respectively. C_d is the drag coefficient, Nu means Nusselt number, Re means Reynolds number and Pr means Prandtl number.

3. The improved CE/SE scheme

Different numerical CE/SE schemes can be constructed from different definitions of SEs and CEs, since flux vectors are approximated by Taylor expansions in SEs and control equations are integrated in CEs. Fig. 1 shows the space-time geometrical configuration of Chang’s two-dimensional CE/SE scheme [10]. Due to the obvious disadvantage that directions of space mesh are neither perpendicular each other nor coincident with global Cartesian coordinate, this special designs of SEs and CEs are neither convenient to construct numerical schemes nor suitable for three-dimensional extension.

Our improved two-dimensional CEs and SEs are demonstrated in Fig. 2. It is obvious that mesh structures shown in Fig. 2 are more general than those by Chang. In order to calculate the values of physical variables at point P, a SE and a CE (a cuboid volume related to the SE) are defined as shown in Fig. 2(b) and (c). A CE/SE scheme corresponding to the new definition of SE and CE would be easy to construct and direct to extend to three-dimensional situation.

Consider two-dimensional conservation equations

$$\frac{\partial U_m}{\partial t} + \frac{\partial E_m(U_m)}{\partial x} + \frac{\partial F_m(U_m)}{\partial y} = 0, \tag{16}$$

where m is the number of the equations. Let (j, k, n) denote a set of space-time mesh points, in which $n = 0, \pm 1/2, \pm 1, \pm 3/2, \ldots$ for time, $j = 0, \pm 1/2, \pm 1, \pm 3/2, \ldots$ for x and $k = 0, \pm 1/2, \pm 1, \pm 3/2, \ldots$ for y.

Fig. 2(a) shows the projection of mesh points on the x-y plane, in which time interval between mesh points \bullet and \bigcirc is $\Delta t/2$ or $1/2$ for n. For every grid point $P(j, k, n)$, there exists a solution element $SE(P)$ (see Fig. 2(b)), and the corresponding conservation element $CE(P)$ is the rectangle $ACEGCEF$ (see Fig. 2(c)).
Let \(x_1 = x, x_2 = y, x_3 = t \) as coordinates of a Euclidean space \(E_3 \). By using the Gauss’ divergence theorem, Eq. (16) can be written in form of

\[
\oint_{S(V)} \mathbf{H}_m \cdot d\mathbf{s} = 0, \tag{17}
\]

where \(S(V) \) is the boundary of the space-time region \(V \) in \(E_3 \), \(\mathbf{H}_m = (\mathbf{E}_m, \mathbf{F}_m, \mathbf{U}_m) \) the space-time flux vector, \(ds = d\sigma \cdot \mathbf{n} \), in which \(d\sigma \) and \(\mathbf{n} \) are the area and the unit outward normal vector of a surface element on \(S(V) \).

For an arbitrary grid point \(P \), we define a solution element \(SE(P) \) constituted by the three perpendicular planes intersecting at \(P \) as demonstrated in Fig. 2(b). Assuming that \(\mathbf{U}_m, \mathbf{E}_m \) and \(\mathbf{F}_m \) at point \((x, y, t) \) in \(SE(P) \) are approximated by the second-order Taylor expansions at \(P'(j, k, n) \), i.e.

\[
U_m(\delta x, \delta y, \delta t) = (U_m)_p + (U_{mx})_p \delta x + (U_{my})_p \delta y + (U_{mt})_p \delta t
+ \frac{1}{2} [(U_{mx})_p \delta x^2 + (U_{my})_p \delta y^2 + \frac{1}{2} (U_{mt})_p \delta t^2] \times (U_{mx})_p \delta y \delta x + (U_{my})_p \delta x \delta y + (U_{mt})_p \delta x \delta y \delta t,
\]

\[
E_m(\delta x, \delta y, \delta t) = (E_m)_p + (E_{mx})_p \delta x + (E_{my})_p \delta y + (E_{mt})_p \delta t
+ \frac{1}{2} [(E_{mx})_p \delta x^2 + (E_{my})_p \delta y^2 + \frac{1}{2} (E_{mt})_p \delta t^2] \times (E_{mx})_p \delta y \delta x + (E_{my})_p \delta x \delta y + (E_{mt})_p \delta x \delta y \delta t,
\]

\[
F_m(\delta x, \delta y, \delta t) = (F_m)_p + (F_{mx})_p \delta x + (F_{my})_p \delta y + (F_{mt})_p \delta t
+ \frac{1}{2} [(F_{mx})_p \delta x^2 + (F_{my})_p \delta y^2 + \frac{1}{2} (F_{mt})_p \delta t^2] \times (F_{mx})_p \delta y \delta x + (F_{my})_p \delta x \delta y + (F_{mt})_p \delta x \delta y \delta t,
\]

where \(\delta x = x - x_P, \delta y = y - y_P, \delta t = t - t_P, x_P, y_P \) and \(t_P \) are the position coordinates of point \(P \), \((X)_P, (Y)_P, (X_{mx})_P, (X_{my})_P, (X_{mt})_P, (Y_{mx})_P, (Y_{my})_P, (Y_{mt})_P, (X_{my})_P, (Y_{mx})_P \) and \((X_{mt})_P, (Y_{mt})_P \) are the constant of \(X \), its first-order and second-order derivative respect to \(x, y \) and \(t \) at point \(P \), respectively, in which \(X \) denotes \(\mathbf{U}_m, \mathbf{E}_m \) and \(\mathbf{F}_m \), respectively.

Substituting Eq. (18)–(20) into Eq. (16), we can obtain

\[
\begin{aligned}
(U_m)_p &= -(U_{mx})_p - (F_{my})_p, \\
(U_{mx})_p &= -(E_{mx})_p - (F_{mx})_p, \\
(U_{my})_p &= -(E_{my})_p - (F_{my})_p, \\
(U_{mt})_p &= -(E_{mt})_p - (F_{mt})_p.
\end{aligned}
\tag{21}
\]

Above equations imply that the variables in the computation are \((U_m)_p \) and its first and second order space derivates \((U_{mx})_p, (U_{my})_p, (U_{mx})_p, (U_{my})_p \) and \((U_{my})_p \), because \(\mathbf{E}_m \) and \(\mathbf{F}_m \) are functions of \(\mathbf{U}_m \).

Assume that flux vectors in every CES satisfy integral conservation laws. Note that the values of physical variables on mesh points \(A, C, E \) and \(G \) are known. Integrating Eq. (17) on the surfaces of \(CE(P) \)

\[
\oint_{S(CE(P))} \mathbf{H}_m \cdot d\mathbf{s} = \oint_{ACEG} \mathbf{H}_m \cdot d\mathbf{s} + \oint_{ACC} \mathbf{H}_m \cdot d\mathbf{s} + \oint_{ACE} \mathbf{H}_m \cdot d\mathbf{s} + \oint_{CEG} \mathbf{H}_m \cdot d\mathbf{s} + \oint_{CEC} \mathbf{H}_m \cdot d\mathbf{s} + \oint_{CCE} \mathbf{H}_m \cdot d\mathbf{s} = 0. \tag{22}
\]

With the aid of Eq. (18)–(20), we can obtain

\[
(U_m)_p + \frac{\Delta x^2}{24} (U_{mx})_p + \frac{\Delta y^2}{24} (U_{my})_p \frac{1}{4} \left(\frac{\Delta t}{\Delta x} + \frac{\Delta t}{\Delta y} \right) F_0 = \left(U_0 + \frac{\Delta t}{\Delta x} E_0 + \frac{\Delta t}{\Delta y} F_0 \right), \tag{23}
\]

where

\[
U = U_m \left(\frac{\Delta x}{4}, \frac{\Delta y}{4}, 0 \right) + U_m \left(-\frac{\Delta x}{4}, \frac{\Delta y}{4}, 0 \right) + U_m \left(\frac{\Delta x}{4}, -\frac{\Delta y}{4}, 0 \right) + U_m \left(-\frac{\Delta x}{4}, -\frac{\Delta y}{4}, 0 \right), \tag{24}
\]

\[
E = E_m \left(0, \frac{\Delta y}{4}, \frac{\Delta t}{4} \right) + E_m \left(0, -\frac{\Delta y}{4}, \frac{\Delta t}{4} \right) = \left(E_0, -\frac{\Delta y}{4}, \frac{\Delta t}{4} \right) + E_m \left(0, -\frac{\Delta y}{4}, \frac{\Delta t}{4} \right), \tag{25}
\]

\[
F = F_m \left(\frac{\Delta x}{4}, 0, \frac{\Delta t}{4} \right) + F_m \left(-\frac{\Delta x}{4}, 0, \frac{\Delta t}{4} \right) + F_m \left(0, \frac{\Delta y}{4}, \frac{\Delta t}{4} \right) + F_m \left(0, -\frac{\Delta y}{4}, \frac{\Delta t}{4} \right), \tag{26}
\]

in which

\[
\begin{aligned}
\hat{U}_m(\delta x, \delta y, \delta t) &= (U_m)_p + (U_{mx})_p \delta x + (U_{my})_p \delta y + (U_{mt})_p \delta t \frac{1}{6} [(U_{mx})_p \delta x^2 + (U_{my})_p \delta y^2 + \frac{1}{2} (U_{mt})_p \delta t^2] \times (U_{mx})_p \delta y \delta x + (U_{my})_p \delta x \delta y + (U_{mt})_p \delta x \delta y \delta t, \\
\hat{E}_m(\delta x, \delta y, \delta t) &= (E_m)_p + (E_{mx})_p \delta x + (E_{my})_p \delta y + (E_{mt})_p \delta t \frac{1}{6} [(E_{mx})_p \delta x^2 + (E_{my})_p \delta y^2 + \frac{1}{2} (E_{mt})_p \delta t^2] \times (E_{mx})_p \delta y \delta x + (E_{my})_p \delta x \delta y + (E_{mt})_p \delta x \delta y \delta t, \\
\hat{F}_m(\delta x, \delta y, \delta t) &= (F_m)_p + (F_{mx})_p \delta x + (F_{my})_p \delta y + (F_{mt})_p \delta t \frac{1}{6} [(F_{mx})_p \delta x^2 + (F_{my})_p \delta y^2 + \frac{1}{2} (F_{mt})_p \delta t^2] \times (F_{mx})_p \delta y \delta x + (F_{my})_p \delta x \delta y + (F_{mt})_p \delta x \delta y \delta t.
\end{aligned} \tag{27–29}
\]

Eq. (23) shows that the current second-order derivates \((U_{mx})_p \) and \((U_{my})_p \) at \(P \) must be known firstly for solving \((U_m)_p \). With the linearly estimated value in \(SE(P) \) approximated from the last half time step, the current second-order derivates \((U_{mx})_p \) and \((U_{my})_p \) can be expressed as
4.1. Shock reflections

Shock wave reflection is a classical benchmark problem [25]. By imposing suitable upstream conditions, an oblique incident and a reflected shock wave will appear above a flat plate. Fig. 3 shows the structural scheme of this problem. The domain is a 4×1 rectangle containing 200×50 uniform meshes. The left boundary conditions are $\rho = 1.0$, $u = 2.9$, $v = 0$, $p = 0.7143$; the upper boundary conditions are $\rho = 1.7$, $u = 2.6193$, $v = -0.50632$, $p = 1.5282$; the right boundary is free; and the bottom boundary is solid. The total computing time is 2.5 with a uniform time step $\Delta t = 0.002$.

Fig. 4 shows the density contours computed by the improved CE/SE scheme, which agrees with the exact solution (Fig. 3) well. In order to evaluate accuracy of the improved CE/SE scheme further, we also calculated the shock reflection problem under the same conditions using Chang’s CE/SE scheme [10], second-order MUSCL scheme and first-order Roe scheme. Fig. 5(a) shows the distribution of the pressure coefficient $C_p (= 2(p/p_\infty - 1)(/\gamma M^2))$ at $y = 0.5$ by different numerical schemes, and the exact solution is also provided. Fig. 5(b) gives a local enlargement vision of the pressure coefficient. It can be seen from Fig. 5 that the accuracy of the improved CE/SE scheme is highest, and that of Chang’s CE/SE scheme is higher than first-order Roe scheme and second-order MUSCL scheme with the same computing meshes. Fig. 5 also shows numerical results using the improved CE/SE scheme with 100×25 meshes, 400×100 meshes and 800×200 meshes, respectively. The numerical results converge to the exact solution as the number of computing meshes increases.

The case of shock reflections shows that the improved CE/SE method not only is a high-accuracy numerical method, but also keeps the advantages of the original CE/SE method and enhances its numerical accuracy.

4.2. Gaseous planar detonations

The computations in this section model a detonation propagating in a stoichiometric $H_2–O_2$ gas, and the initial pressure and the temperature are 1 atm and 298 K, respectively. Channel walls are considered as solid boundaries. Assume that there is no energy loss on the walls during a detonation propagating. The detonation wave is generated by an igniting on the left with a high initial pressure and temperature as 28 atm and 3874 K, respectively. Those initial conditions make DDT (Deflagration-to-Detonation Transition) process complete within 0.5 μs, so we can study detonations clearly without considering the deflagration propagation and the DDT process.

Computing parameters of stoichiometric $H_2–O_2$ gas for the three chemical reaction models are given as follows.

1. Two-step reaction model: $Q = 1.33 \times 10^7$ J/kg, $k_s = 3.0 \times 10^6$ m3/kg/s, $k_p = 1.875 \times 10^{-3}$ m3/N/s, $E_s = 2.261 \times 10^7$ J/kg, $E_p = 4.6151 \times 10^6$ J/kg $[20]$.

2. Detailed chemical reaction model: see Table 1 $[21]$.

3. Sichel’s two-step reaction model: $a = 1.2 \times 10^4$, $b = 8 \times 10^3$, $c = 0$ $[5]$; $C(\gamma H_2, O_2, H, O, HO, HO_2, H_2O, H_2O_2) = (1.978 \times 10^{-2}, 0.10042, 4.49 \times 10^{-3}, 3.27 \times 10^{-2}, 0.14027, 2.3209 \times 10^{-4}, 0.70205, 2.2772 \times 10^{-3})$ which are calculated from the detailed chemical reaction model.

Fig. 6(a)-(c) show the pressure profiles using the two-step reaction model, the detailed chemical reaction model and Sichel’s chemical reaction model.

Fig. 3. Structural scheme of the shock reflection problem.

\[
(\mathbf{u}_m)_{\rho}^{+} = \frac{[U_{mx}]_{\rho} + (U_{mx})_{\rho} + (U_{mx})_{\rho}]}{2\Delta x},
\]

\[
(\mathbf{u}_m)_{\rho}^{-} = \frac{[U_{my}]_{\rho} + (U_{my})_{\rho} + (U_{my})_{\rho}]}{2\Delta y},
\]

where $U_{mx} = (U_{mx})_{\rho} + (U_{my})_{\rho}$, $U_{my} = (U_{mx})_{\rho} + (U_{my})_{\rho}$.

The cross derivatives can be computed from

\[
(\mathbf{u}_m)_{\rho}^{+} = \frac{(U_{mx})_{\rho} + (U_{my})_{\rho}}{2}.
\]

Using the continuous condition at point A, C, E and G, the left and the right derivatives of U_m respect to x and y can be gained as

\[
(U_{mx})_{\rho}^{+} = -\frac{1}{\Delta x} \left[U_m(0.0, \frac{\Delta t}{2})_{A} + U_m(0.0, \frac{\Delta t}{2})_{C} - 2(U_{mx})_{\rho} \right],
\]

\[
(U_{mx})_{\rho}^{-} = \frac{1}{\Delta x} \left[U_m(0.0, \frac{\Delta t}{2})_{A} + U_m(0.0, \frac{\Delta t}{2})_{C} - 2(U_{mx})_{\rho} \right],
\]

\[
(U_{my})_{\rho}^{+} = -\frac{1}{\Delta y} \left[U_m(0.0, \frac{\Delta t}{2})_{A} + U_m(0.0, \frac{\Delta t}{2})_{E} - 2(U_{my})_{\rho} \right],
\]

\[
(U_{my})_{\rho}^{-} = \frac{1}{\Delta y} \left[U_m(0.0, \frac{\Delta t}{2})_{A} + U_m(0.0, \frac{\Delta t}{2})_{E} - 2(U_{my})_{\rho} \right].
\]

4. Applications

4.1. Shock reflections

Fig. 4. Density contours by improved CE/SE scheme (200×50).
reaction model, respectively. All of the three figures are typical pressure profiles of a planar detonation wave. The highest pressure appears in detonation front, the pressure decreases in rarefaction zone and keeps constant in stable zone. Table 2 gives characteristic quantities of detonation waves coming from five different ways (experiment, C–J theory, and three numerical simulations by the improved CE/SE scheme using two-step, detailed and Sichel’s two-step reaction models, respectively) under the same initial conditions. Relative errors of detonation velocities calculated by the three chemical reaction models are all limited to 3% compared to the experimental result. As to detonation temperature and C–J pressure, the detailed chemical reaction model agrees best with the experimental data. For peak pressure, the two-step reaction model agrees best with the experimental data.

In order to verify the improved CE/SE scheme further, we simulate H$_2$–O$_2$ detonations at different equivalence ratios using the detailed chemical reaction model. Fig. 7(a)–(c) show comparisons of the three different physical variables, such as the detonation velocities, the C–J pressures and the von Neumann peak pressures, obtained from our numerical results, experiment and C–J theory, respectively. The comparisons show that detonation velocities by C–J theory and simulations are both agree well with that from experiments, but for peak pressure and C–J pressure at low equivalence ratios situations, the numerical results are more accurate than that by C–J theory.

This case indicates that the improved CE/SE scheme can simulate gaseous planar detonation waves successfully and accurately using the three chemical reaction models.

4.3. Mach reflection of cellular detonations

Reflection of detonation wave on a wedge is one of the most fundamental problems relating interactions between detonation wave and surrounding structure [27–29]. In this section, we simulated Mach reflection of cellular detonations and captured cellular
patterns on tube wall. Computational models are the same as Section 4.2 except that a 19.3°/C176 wedge is putted in the tube. The boundary of the wedge is also a solid.

Fig. 8(a)–(d) show the cellular patterns observed in experiment [27] and numerical simulations using the two-step reaction model, the detailed chemical model and Sichel’s two-step reaction model, respectively. It is found that all the three numerical results can describe the basic phenomena of cellular detonation reflections, such as regular numerical cellular pattern at the left of the wedge, changes of the size and the shape of cells between the triple-point trajectory and the wedge. Table 3 lists characteristic parameters of cellular patterns and detonation reflections. Fig. 9 shows a schematic sketch identifying characteristic parameters of the cellular pattern. Comparisons in Table 3 show that the numerical results by the three chemical reaction models all agree well with the experimental results in quantity.

The case of Mach reflection of cellular detonations indicates that the improved CE/SE scheme can simulate cellular structure and reflection of gaseous detonations accurately using all the three chemical reaction models.

4.4. Two-phase planar detonations

In this section, two-phase planar detonations in a gas–droplet system are simulated. Initial pressure and temperature are 1 atm and 298 K, respectively. Fuel droplets are made of C3H6O and with a uniform radius 50 μm. Channel walls are still considered as solid boundaries. Detonation wave is generated by igniting in the left with a high initial pressure and temperature as 20 atm and 2980 K, respectively. Other computing parameters of a stoichiomteric O2–C3H6O are given as below:

\[k = 0.1 \text{ W/K/m}, \quad L = 5.27 \times 10^5 \text{ J/kg}, \quad \rho_f = 860 \text{ kg/m}^3, \quad \mu = 2.07 \times 10^{-3} \text{ Pas}, \quad \mu_d = 3.5 \times 10^{-4} \text{ Pas}, \quad Q = 3.17 \times 10^7 \text{ J/kg}, \quad Pr = 0.74. \]

Fig. 10(a)–(d) show the distributions of the pressure, the temperature, the density of gas phase and the density of droplet phase in x direction at \(t = 1 \times 10^{-3} \text{ s}. \) It can be seen that the profiles of the pressure, the temperature and the density of the gas phase are similar to those of gaseous detonations, but values of physical quantities are higher than those of gaseous detonations. That means the improved CE/SE scheme can simulate two-phase planar detonations using the two-fluid model. The higher values of physical quantities are due to the high chemical energy of the liquid fuel and that is one of the main reasons for two-phase detonation research. Fig. 10(d) shows that the length of chemical reaction zone is about 0.06 m, which is much longer than that in a gaseous detonation. This phenomenon was also observed in experiments [30].

It is assumed that chemical reactions finish immediately when fuel droplets are converted into gaseous state in our two-fluid model. The rate of state transformation is determined by Eq. (9). So the rate of chemical reaction is related to \(I_d \). Comparing the characteristic time of \(I_d \) (physical process of fuel droplet) with that of chemical reactions, it can be proved that the assumption is reasonable.

The variation of droplet radius respect to time can be computed by

\[
\frac{dr}{dt} = \frac{9\lambda N_l(T - T_d)}{\pi r \rho_d L} + 3 \left(\frac{\rho \mu}{\rho_d \mu_d} \right)^{\frac{1}{2}} \left(\frac{\rho_d}{\rho} \right)^{\frac{1}{2}} \left| \mathbf{V} - \mathbf{V_d} \right|^{1/2} r^{-3/2},
\]

(39)
From Fig. 10 the approximate values of physical quantities can be obtained as: \(q/C_2 \approx 1.0 \text{ kg/m}^3 \), \(V/C_0 V_d \approx 1000 \text{ m/s} \) and \(T/C_0 T_d \approx 2200 \text{ K} \), then \(dr/dt/C_2 \approx 1.0 \text{ m/s} \) calculated from Eq. (39). That means the characteristic time of \(I_d \) is \(5 \times 10^{-5} \text{ s} \), if the radius of fuel droplets is equal to 50 \(\mu \text{m} \). The rate of chemical reactions is obtained as \(1.0 \times 10^5 \text{ kg/m}^3\text{s} \) from Eq. (2). The fuel droplet concentration is about 5\%. So the characteristic time of chemical reactions is equal to \(5 \times 10^{-7} \text{ s} \) \((5 \times 10^{-5} \text{ s}) \). The comparison implies that the characteristic time of \(I_d \) is much larger than that of chemical reaction. Therefore the chemical reaction can finish within the characteristic time of \(I_d \).

In order to verify the accuracy of the improved CE/SE scheme in two-phase detonations, we simulated two-phase planar detonations in \(\text{O}_2-C_6\text{H}_{14} \) and \(\text{O}_2-C_{10}\text{H}_{20} \) system with different equivalence ratios and droplet radii. Table 4 shows detonation velocities at different computational conditions with corresponding results from C–J theory and experiments [30,31]. The experimental errors in gas–droplet detonations are much larger than that in gaseous detonations, because experimental conditions of gas–droplet detonations, such as the sizes and distribution of droplets, are quite difficult to be well-proportioned. But people prefer to trust in experimental results because errors of C–J theory which ignores two-phase effects are larger [30]. The experimental errors in gas–droplet detonations are much larger than that in gaseous detonations, because experimental conditions of gas–droplet detonations, such as the sizes and distribution of droplets, are quite difficult to be well-proportioned. But people prefer to trust in experimental results because errors of C–J theory which ignores two-phase effects are larger [30].

The main advantages of the current scheme are clear in physical concept, easy to be extended to three-dimensional situations, accurate to capture the shock wave and convenient to implement boundary conditions. In the applications of detonation simulations, this scheme combines chemical reaction models with physics models conveniently and treats source items easily. The numerical results show that the improved CE/SE scheme can simulate gaseous and two-phase detonation problems accurately. The improved CE/SE scheme can also be applied to detonation simulations for academic explore and engineering extensively.

In future, we will develop a three-dimensional improved CE/SE scheme for detonation simulations. Some specific detonation problems, such as DDT process, PDE (Pulse Detonation Engine) perfor-

Table 3

<table>
<thead>
<tr>
<th>Cell width/ cell length</th>
<th>Exit angle (°)</th>
<th>Entrance angle (°)</th>
<th>Angle of transverse wave trace (°)</th>
<th>Angle between the triple-point trajectory and the wedge (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>0.5–0.6</td>
<td>5–10</td>
<td>32–40</td>
<td>30</td>
</tr>
<tr>
<td>Two-step</td>
<td>0.59</td>
<td>9.2</td>
<td>33.0</td>
<td>30.5</td>
</tr>
<tr>
<td>Sichel’s two-step</td>
<td>0.60</td>
<td>11.2</td>
<td>31.5</td>
<td>29.0</td>
</tr>
<tr>
<td>Detailed</td>
<td>0.51</td>
<td>9.5</td>
<td>38.2</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Fig. 8. Cellular patterns of detonation waves over the 19.3° wedge.

Fig. 9. Schematic sketch identifying characteristic parameters of the cellular pattern.

5. Conclusions

In this paper, we developed an improved CE/SE scheme for detonation simulations. This scheme is based on the rectangular mesh and the second-order Taylor expansion. Three chemical reaction models and their governing equations were introduced for gaseous detonation simulations, and a two-fluid model was introduced for two-phase detonation simulations. Obviously, other chemical and physical models can be added to the current framework conveniently.

The main advantages of the current scheme are clear in physical concept, easy to be extended to three-dimensional situations, accurate to capture the shock wave and convenient to implement boundary conditions. In the applications of detonation simulations, this scheme combines chemical reaction models with physics models conveniently and treats source items easily. The numerical results show that the improved CE/SE scheme can simulate gaseous and two-phase detonation problems accurately. The improved CE/SE scheme can also be applied to detonation simulations for academic explore and engineering extensively.

In future, we will develop a three-dimensional improved CE/SE scheme for detonation simulations. Some specific detonation problems, such as DDT process, PDE (Pulse Detonation Engine) perfor-
mance, will also be investigated using the improved CE/SE scheme and appropriate chemical and physical models.

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 10732010, 10572002 and 20490206).

References

Table 4

Detonation velocities at different computational conditions (2000 meshes).

<table>
<thead>
<tr>
<th>Liquid fuel</th>
<th>Droplet radius (µm)</th>
<th>Equivalence ratio</th>
<th>Simulation (m/s), relative error</th>
<th>Experiment (m/s)</th>
<th>C–J theory (m/s), relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6H14</td>
<td>20–30</td>
<td>0.41</td>
<td>1544.83, -7.50%</td>
<td>1670</td>
<td>1950, 16.77%</td>
</tr>
<tr>
<td>C6H14</td>
<td>20–30</td>
<td>0.49</td>
<td>1671.30, -2.83%</td>
<td>1720</td>
<td>2040, 18.60%</td>
</tr>
<tr>
<td>C6H14</td>
<td>20–30</td>
<td>0.56</td>
<td>1773.92, 4.35%</td>
<td>1700</td>
<td>2090, 22.94%</td>
</tr>
<tr>
<td>C6H14</td>
<td>20–30</td>
<td>0.68</td>
<td>1935.89, 8.76%</td>
<td>1780</td>
<td>2170, 21.91%</td>
</tr>
<tr>
<td>C10H20</td>
<td>145</td>
<td>1.0</td>
<td>1946.93, -8.59%</td>
<td>2130</td>
<td>2380, 11.74%</td>
</tr>
<tr>
<td>C10H20</td>
<td>375</td>
<td>0.914</td>
<td>1996.72, 7.93–10.32%</td>
<td>1810–1850</td>
<td>2260, 22.16–24.86%</td>
</tr>
<tr>
<td>C10H20</td>
<td>1300</td>
<td>0.23</td>
<td>1169.97, 6.40–20.62%</td>
<td>970–1250</td>
<td>1780, 42.40–83.51%</td>
</tr>
</tbody>
</table>

Fig. 10. Physical quantity profiles of O2–C3H6O two-phase detonation wave at t = 1 × 10–3 s (2000 meshes).

