Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional

TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao
School of Physical Science and Technology, Southwest University, Chongqing 400715

(Received 1 June 2012)

The potential energy surfaces and density distributions of ground states in even-mass Be isotopes are studied by using the point-coupling covariant density functional theory with the PC-F1 effective interaction. The clustering structure is exhibited automatically in most of the Be isotopes. The results indicate that the Be clustering structure, while pronounced in even-mass Be nuclei, is only noticeable in 6Be. However, the α-cluster structure is in-beam investigated in 6Be. The point-coupling CDFT has recently attracted more and more attention due to its advantages and potential applications. In this work, the ground-state properties of even-mass Be isotopes are investigated by analyzing the potential energy surfaces (PES), density distributions and single-particle energy levels.

In the CDFT with point-coupling interaction, the energy density functional is written as

\[E_{\text{EDF}} = \sum_k \int dr \bar{\psi}_k \gamma_i (\mathbf{r}) (-i \gamma \cdot \nabla + m) \psi_k (\mathbf{r}) \]

\[+ \int dr \left(\frac{\alpha_s}{2} \rho_s^2 + \frac{\beta_s}{3} \rho_s^3 + \frac{\gamma_s}{4} \rho_s^4 + \frac{\delta_s}{2} \rho_s \Delta \rho_s \right) \]

\[+ \frac{1}{2} \alpha_{\nu} \mu \Delta \mu + \frac{1}{4} \gamma_{\nu} \mu \Delta \mu^2 + \frac{1}{4} \Delta \rho_s \]

\[+ \frac{1}{2} \alpha_{\nu} \mu \Delta \mu + \frac{1}{4} \gamma_{\nu} \mu \Delta \mu^2 + \frac{1}{4} \Delta \rho_s \]

\[+ \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - F_{0 \mu} \partial_0 A_\mu + e \left(1 - \frac{\gamma_{\nu} \mu \Delta \mu}{2} \right) \]

\[\psi_k (\mathbf{r}) \text{ is the nucleon Dirac spinor field, } m \text{ is the nucleon mass, and } e \text{ is the charge unit for protons.} \]

\[\text{There are nine coupling constants } \alpha_s, \alpha_{\nu}, \alpha_{\nu}, \alpha_{\mu}, \alpha_{\mu}, \alpha_{\nu}, \alpha_{\nu}, \alpha_{\mu}, \alpha_{\mu}. \]

*Supported by the National Natural Science Foundation of China (11075133, 10205019), the Fundamental Research Funds for the Chinese Central Universities (XDJK2010D005, XDJK2010C049), and the National Innovation Experimental Program for Chinese University Students (101063522).

**Correspondence author. Email: lijx@swu.edu.cn

© 2013 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/0256-307X/30/1/012101
The quadrupole deformation parameter β is related to $\langle Q_2 \rangle$ by $\langle Q_2 \rangle = \frac{3}{5R_A^2}A \beta R$, A is the mass number and $R = r_0 A^{1/3}$ ($r_0 = 1.2$) fm. Here C is the corresponding curvature constant and q_2 is the constrained value of the quadrupole moment.\cite{45}

In the calculation, we use a popular parameterized relativistic functional PC-F1\cite{44} for the particle-hole channel. The solution of the equation of motion for the nucleons is accomplished by an expansion of the Dirac spinors in a set of three-dimensional harmonic oscillator basis functions in Cartesian coordinates with 14 major shells. The intrinsic triaxially deformed states are obtained as solutions of the self-consistent relativistic mean-field (RMF) equations constrained on the mass quadrupole moment related to the parameter β varying $\beta \in [-1.5, 2.0]$ with step size $\Delta \beta = 0.1$. We choose z axis as the symmetry axis, the density distributions are plotted in the zx plane.

![Fig. 1.](image)

Figure 1 shows the PES of even-mass Be isotopes as a function of the axial deformation parameter β obtained by the constrained CDFT calculations using the PC-F1 set for even-mass 6–14Be.

The total binding energies, single-nucleon wave functions, and other Observables are generated from self-consistent solutions of the above equations. For lighter nuclei, the density distributions are insensitive to pairing correlations.\cite{45} Therefore, the pairing correlations are not taken into account in our results.

Unrestricted CDFT calculation gives only a local minimum on the PES. The total energies of different deformations are obtained by imposing a quadratic constraint on the mass quadrupole moment

$$\langle H \rangle + \frac{1}{2}C(\langle \hat{Q}_2 \rangle - q_2)^2,$$

where $\langle H \rangle$ is the total energy, and the mass quadrupole operator \hat{Q}_2 reads

$$\hat{Q}_2 = 2z^2 - x^2 - y^2.$$

In Table 1, we present the properties for the ground state of even-mass 6–14Be from the CDFT calcula-
utions with PC-F1 effective interaction, including the calculated binding energies, quadrupole deformation parameters and the corresponding root-mean-square (rms) radii. The experimental binding energies\(^{[17]}\) of even-mass Be isotopes are well reproduced except \(^{8}\text{Be}\). In particular, the calculated binding energy of \(^{12}\text{Be}\) is exactly consistent with the calculation of density-dependent relativistic mean-field theory\(^{[48]}\). Moreover, it is noted that the quadrupole deformation parameters of nuclei are changing with neutron number. Starting from a prolate deformed shape with \(\beta = 0.86\) in \(^{6}\text{Be}\), the deformation is maximum in \(^{8}\text{Be}\), and then continually decreases down to zero in \(^{12}\text{Be}\). With two neutrons more than \(N = 8\), the ground state becomes prolate deformed again in \(^{14}\text{Be}\), as shown in Fig. 1. It is known that the rms radius indicates the spatial distribution of the atomic nucleus. As is expected, \(^{12}\text{Be}\) has the smallest proton rms radius due to shell closure at \(N = 8\). In the neutron drip line region, there is the largest difference between the neutron rms radius and the proton rms radius for \(^{14}\text{Be}\).

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Theor. BE (MeV)</th>
<th>Expt. BE (MeV)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>Total BE (MeV)</th>
<th>Neutron (R_{\text{rms}}) (fm)</th>
<th>Proton (R_{\text{rms}}) (fm)</th>
<th>Total (R_{\text{rms}}) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{8}\text{Be})</td>
<td>-24.349</td>
<td>-26.923</td>
<td>0.26</td>
<td>1.16</td>
<td>0.86</td>
<td>2.037</td>
<td>2.731</td>
<td>2.521</td>
</tr>
<tr>
<td>(^{10}\text{Be})</td>
<td>-47.368</td>
<td>-56.499</td>
<td>1.27</td>
<td>1.29</td>
<td>1.28</td>
<td>2.574</td>
<td>2.594</td>
<td>2.584</td>
</tr>
<tr>
<td>(^{12}\text{Be})</td>
<td>-61.025</td>
<td>-64.976</td>
<td>0.41</td>
<td>0.66</td>
<td>0.51</td>
<td>2.566</td>
<td>2.364</td>
<td>2.487</td>
</tr>
<tr>
<td>(^{14}\text{Be})</td>
<td>-70.832</td>
<td>-68.649</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.768</td>
<td>2.344</td>
<td>2.634</td>
</tr>
</tbody>
</table>

\(\rho_n\) \(\rho_p\) \(\rho\) \(\beta = 0.86\)

\(\rho_n\) \(\rho_p\) \(\rho\) \(\beta = 1.28\)

\(\rho_n\) \(\rho_p\) \(\rho\) \(\beta = 0.51\)

\(\rho_n\) \(\rho_p\) \(\rho\) \(\beta = 0.00\)

\(\rho_n\) \(\rho_p\) \(\rho\) \(\beta = 0.86\)

Figure 2 displays the density distributions of neutrons, protons and matter from the CDFT calculations using the PC-F1 set for the even-mass isotopes of Be.

Fig. 2. (Color online) The density distributions of neutrons, protons and matter from the CDFT calculations using the PC-F1 set for the even-mass isotopes of Be.

Table 1. The calculated binding energies (BEs), quadrupole deformation parameters (\(\beta\)) and the corresponding rms radii (\(R_{\text{rms}}\)) for the even-mass isotopes of Be obtained by PC-F1, compared with the experimental data available.

With the increase of neutron number, the distances undergo a decrease first and then increase, which is in agreement with the AMD calculations.\(^{[8]}\) With the increase of neutron number, a dramatic change in the density distributions of neutrons is observed. The density distributions of protons change with those of neutrons.

The clustering structure can be understood from the distributions of single-particle levels. Taking \(^{8,14}\text{Be}\) as examples, in Fig. 3, we plot the single-particle energies of neutrons and protons versus the axial deformation parameter \(\beta\). The dotted curves denote the corresponding Fermi surface. The solid line represents even parity level, while the dashed line stands for odd parity level. \(^{8}\text{Be}\) has the same configurations of \((1s_1/2)^2(1p_3/2)^2\) for protons and neutrons. The corresponding configurations of \(^{14}\text{Be}\) are \((1s_1/2)^2(1p_3/2)^2\) for protons and...
and \((1s_{1/2})^2(1p_{3/2})^4(1p_{1/2})^2(2s_{1/2})^2\) for neutrons. A lower-than-average density of single-particle levels around the Fermi energy results in extra binding from shell correction, whereas a larger-than-average value reduces binding. The density of single-particle levels near the Fermi surface in the oblate side is much larger than that in the prolate side. Therefore, large energy gaps around the Fermi surface in the single-particle levels often correspond to the minima on the PES.

![Graph](image)

Fig. 3. (Color online) Single-particle energies of (left panels) neutrons and (right panels) protons in \(^{8,14}\)Be versus the quadrupole deformation parameter \(\beta\). The dotted curves denote the corresponding Fermi surface.

In summary, we have studied the \(\alpha\)-cluster structure in the ground state of even-mass Be isotopes within the framework of the CDFT with the PC-F1 effective interaction. Our calculated binding energies agree well with the experimental values except \(^8\)Be. The calculated results show that \(^{12}\)Be is a spherical nucleus, and other nuclei are prolate deformed. Moreover, the \(\alpha-\alpha\) distances and the corresponding quadrupole deformation parameters have a similar evolution trend against the neutron number. It is suggested that \(^6\)Be has an \(\alpha+2p\) clustering structure, while even-mass \(^{8,10,14}\)Be have \(2\alpha\) clustering structure. As the number of neutrons increases, the density distributions of protons change in a similar way as those of neutrons.

It has to be pointed out that most of the Be isotopes are soft under the distortion of shapes. The beyond mean-field effects may have an influence on the density distributions. It will be very interesting to analyze this effect on the cluster in the future.

We would like to thank Zhipan Li, Jiangming Yao, Wei Zhang and Jian Xiang for helpful discussions.

References

[42] Ring P and Schuck P 1980 *Nuclear Many-body Problem* (Heidelberg: Springer)
GENERAL
010201 A Method of Choosing the Optimal Number of Singular Values in the Inverse Laplace Transform for the Two-Dimensional NMR Distribution Function
JIANG Zhi-Min, WANG Wei-Min

010301 Double Barrier Resonant Tunneling in Spin-Orbit Coupled Bose–Einstein Condensates
LI Zhi, WANG Jian-Zhong, FU Li-Bin

010302 An Alternative Approach to Construct the Initial Hamiltonian of the Adiabatic Quantum Computation
DUAN Qian-Heng, ZHANG Shuo, WU Wei, CHEN Ping-Xing

010303 One-Way Quantum Computation with Cluster State and Probabilistic Gate
DIAO Da-Sheng

010304 Computation of Quantum Bound States on a Singly Punctured Two-Torus
CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi

010305 Four-State Modulation Continuous Variable Quantum Key Distribution over a 30-km Fiber and Analysis of Excess Noise
WANG Xu-Yang, BAI Zeng-Liang, WANG Shao-Feng, LI Yong-Min, PENG Kun-Chi

010306 Fractals in Quantum Information Process
BI Feng, LI Chuan-Feng

010501 Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field
ZHANG Yan-Chao, HE Ji-Zhou

010502 Nonergodic Brownian Motion in a Collinear Particle-Coupled Harmonic Chain Model
LU Hong, BAO Jing-Dong

010503 Single-Hopf Bursting in Periodic Perturbed Belousov–Zhabotinsky Reaction with Two Time Scales
LI Xiang-Hong, BI Qin-Sheng

010601 Accuracy Evaluation of NIM5 Cesium Fountain Clock
LIU Nian-Feng, FANG Fang, CHEN Wei-Liang, LIANG Ping-Wei, WANG Ping, LIU Kun, SUO Rui, LI Tian-Chu

010701 Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array
WU Jian-Xiong, CHENG Teng, ZHANG Qing-Chuan, ZHANG Yong, MAO Liang, GAO Jie, CHEN Da-Peng, WU Xiao-Ping

THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
011201 Photoproduction of Large Transverse Momentum Dimuonium (μ⁺μ⁻) in Relativistic Heavy Ion Collisions
YU Gong-Ming, LI Yun-De

NUCLEAR PHYSICS
012101 Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional
TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao

ATOMIC AND MOLECULAR PHYSICS
013101 Variational-Integral Perturbation Corrections for Hydrogen Atoms in Magnetic Fields
ZHANG Yun-Hui, PAN Yi-Qing, LI Wen-Juan, DENG Xia, HAI Wen-Hua

013201 Visible Light Emission in Highly Charged Kr⁺²⁺ Ions Colliding with an Al Surface
YANG Zhi-Hu, XU Qiu-Mei, GUO Yi-Pan, WU Ye-Hong, SONG Zhang-Yong
013701 Trapping, Transporting, and Splitting Cold Molecules Employing a Spatial Liquid Crystal Modulator
GONG Tian-Lin, HUANG Yun-Xia, MU Ren-Wang, JI Xian-Ming, YANG Xiao-Hua

013702 Demonstration of Cold 40Ca$^+$ Ions Confined in a Microscopic Surface-Electrode Ion Trap
CHEN Liang, WAN Wei, XIE Yi, WU Hao-Yu, ZHOU Fei, FENG Mang

013703 Cooling and Crystallization of Trapped 115Cd$^+$ Ions for Atomic Clock
WANG Shi-Guang, ZHANG Jian-Wei, MIAO Kai, WANG Zheng-Bo, WANG Li-Jun

FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS)

014201 Birefringence Optical Feedback with a Folded Cavity in HeNe Laser
WU Yun, TAN Yi-Dong

014202 Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification
PAN Xue, FENG Yu-Jie, WANG Jiang-Feng, LU Xing-Hua, OUYANG Xiao-Ping, CHEN Jia-Lin, JIANG You-En, FAN Wei, LI Xue-Chun

014203 Effect of Laser Pulse Width on the Laser Lift-off Process of GaN Films
CHEN Ming, ZHANG Jiang-Yong, LV Xue-Qin, YING Lei-Ying, ZHANG Bao-Ping

014204 Spectral Characteristic Based on Fabry–Pérot Laser Diode with Two-Stage Optical Feedback
WU Jian-Wei, Bikash NAKARMI

014205 Principal State Analysis for a Compact in-Line Fiber Polarization Controller
LI Zheng-Yong, WU Chong-Qing, WANG Zhi-Hao, QIN Tao, WANG Yi-Xu

014206 Magnetic Field Induced Spectroscopy of 88Sr Atoms Probed with a 10 Hz Linewidth Laser
LIN Yi-Ge, WANG Qiang, LI Ye, LIN Bai-Ke, WANG Shao-Kai, MENG Fei, ZHAO Yang, CAO Jian-Ping, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun

014207 High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides
ZHANG Can, SUN Jing-Hua, XIAO Xi, SUN Wei-Min, ZHANG Xiao-Jun, CHU Tao, YU Jin-Zhong, YU Yu-De

014208 Two-Crystal Design and Numerical Simulations for High-Average-Power Second-Harmonic Generation
ZHONG Hai-Zhe, YUAN Peng, ZHU He-Yuan, QIAN Lie-Jia

014209 Stop Band Gap in Periodic Layers of Confined Atomic Vapor/Dielectric Medium
LI Yuan-Yuan, LI Li, LU Yi-Xin, ZHANG Yan-Peng, XU Ke-Wei

014501 Effect of Interstitial Media on Segregation in Vertically Vibrated Granular Mixtures
YUAN Xiao-Xian, LI Liang-Sheng, WEN Ping-Ping, SHI Qing-Fan, ZHENG Ning

014701 Dynamic Characteristics of Gas Transport in Nanoporous Media
SONG Hong-Qing, YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue

PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES

015201 Super-X Divertor Simulation for HCSB-DEMO Conception Design
ZHENG Guo-Yao, PAN Yu-Dong, FENG Kai-Ming, HE Hong-Da, CUI Xue-Wu

015202 Influence of Discharge Voltage on Charged Particles in a Multi-Dipole Device in the Presence of an Ion Collecting Surface
M. K. Mishra, A. Phukan, M. Chakraborty

CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES

016101 Formation of Co-implanted Silicon Ultra-Shallow Junctions for Low Thermal Budget Applications
Rehana Mustafa, S. Ahmed, E. U. Khan
016202 Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate
YAN Ren-Jie, WU Jing-Hua, LI Cong, XU Gao-Jie, ZHOU Lu-Wei

016203 Dynamic Mechanical Behavior and Failure Mechanism of Polymer Composites Embedded with Tetranoodle-Shaped ZnO Whiskers
RONG Ji-Li, WANG Dan, WANG Xi, LI Jian, XU Tian-Fu, LU Ming-Ming, CAO Mao-Sheng

016801 Electric-Field Switching of Bright and Dark Excitons in Semiconductor Crossed Nanowires
LI Xiao-Jing, K. S. Chan

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

017101 Electronic Structure, Lattice Dynamics and Thermoelectric Properties of PbTe from First-Principles Calculation
LU Peng-Xian, QU Ling-Bo

017102 Ultrafast and Broadband Terahertz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films
CHEN Zhi, WEN Qi-Ye, DONG Kai, SUN Dan-Dan, QIU Dong-Hong, ZHANG Hui-Wu

017103 First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene
HUANG Juan, CHEN Hong-Jin, WU Mu-Sheng, LIU Gang, OUYANG Chu-Ying, XU Bo

017201 Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases
ZHANG Xiao-Wei, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo

017202 Efficiency Enhancement of MEH-PPV:PCBM Solar Cells by Addition of Ditertutyl Peroxide as an Additive
LI Yan-Fang, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen, ZHANG Feng-Ling

017301 On the Voltage and Frequency Distribution of Dielectric Properties and ac Electrical Conductivity in Al/SiO₂/p-Si (MOS) Capacitors
Ahmet Kaya, Şemssettin Altındal, Yasemin Şafak Asar, Zekayi Sönmez

017302 High Deep-Ultraviolet Quantum Efficiency GaN P–I–N Photodetectors with Thin P-GaN Contact Layer
LIAN Hai-Feng, WANG Guo-Sheng, LU Hai, REN Fang-Fang, CHEN Dun-Jun, ZHANG Rong, ZHENG You-Dou

017303 Electronic Properties of a Phenylacetylene Molecular Junction with Dithiocarboxylate Anchoring Group
LIU Wen, XIA Cai-Juan, LIU De-Sheng

017401 Intra-Valley Spin-Triplet p + ip Superconducting Pairing in Lightly Doped Graphene
ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren

017402 Experimental Investigation of the Electronic Structure of Ca₀.₈₃La₀.₁₇Fe₂As₂
HUANG Yao-Bo, RICHARD Pierre, WANG Ji-Hui, WANG Xiao-Ping, SHI Xun, XU Nan, WU Zheng, LI Ang, YIN Jia-Xin, QIAN Tian, LV Bing, CHU Ching-Wu, PAN Shu-Heng, SHI Ming, DING Hong

017501 Magnetoelastic Anisotropy of FeSiB Glass-Coated Amorphous Microwires
LIU Kai-Huang, LU Zhi-Chao, LIU Tian-Cheng, LI De-Ren

017601 Detecting Larmor Precession of a Single Spin with a Spin-Polarized Tunneling Current
GUO Xiao-Dong, DONG Li, GUO Yang, SHAN Xin-Yan, ZHAO Ji-Min, LU Xing-Hua

017801 Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector
Yasser Saleh Mustafa Alajerami, Suhairul Hashim, Ahmad Termizi Ramli, Muneer Aziz Saleh, Ahmad Bazlie Bin Abdul Kadir, Mohd. Iqbal Saripan

017802 Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film
HOU Yong-Qiang, LI Xu, HE Kai, QI Hong-Ji, YI Kui, SHAO Jian-Da

017901 Current Density-Sensitive Welding of a Semiconductor Nanowire to a Metal Electrode
TAN Yu, WANG Yan-Guo
Elimination of the Schottky Barrier at an Au-ZnSe Nanowire Nanocontact via In Situ Joule Heating
TAN Yu, WANG Yan-Guo

CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

Fabrication of Thin Graphene Layers on a Stacked 6H-SiC Surface in a Graphite Enclosure
DENG Peng-Fei, LEI Tian-Min, LU Jin-Jun, LIU Fu-Yan, ZHANG Yu-Ming, GUO Hui, ZHANG Yi-Men, WANG Yue-Hu, TANG Xiao-Yan

Phase Structure and Electrical Conduction of CaTi$_{1-x}$Sc$_x$O$_{3-\delta}$ Ceramics
ZHANG Qi-Long, LIU Yang, YANG Hui

Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy
P. Deeyai, M. Suphantharika, R. Wongsagonsup, S. Dangtip

A SQUID Bootstrap Circuit with a Large Parameter Tolerance
ZHANG Guo-Feng, ZHANG Yi, Hans-Joachim Krause, KONG Xiang-Yan, Andreas Offenhäusser, XIE Xiao-Ming

Enhanced Response to Subthreshold Signals by Phase Noise in a Hodgkin–Huxley Neuron
KANG Xiao-Sha, LIANG Xiao-Ming, LÜ Hua-Ping

A Micro-Community Structure Merging Model Using a Community Sample Matrix
LI Lin, PENG Hao, LU Song-Nian, TIAN Ying

GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS

Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion
LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong

Spatial Distribution and Anisotropy of Energetic Particles Accelerated by Shock Waves: Focused Transport Model
ZUO Ping-Bing, FENG Xue-Shang