Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection

B. X. Gu, C. X. Xu, G. P. Zhu, S. Q. Liu, L. Y. Chen, and X. S. Li

Downloaded from http://pubs.acs.org on February 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

[View the Full Text HTML]
Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection

Advanced Photonics Centre, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, P. R. China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China

Received: September 9, 2008; Revised Manuscript Received: October 27, 2008

Directly using zinc powders as source material, ZnO nanorods were fabricated on gold wire by hydrothermal reaction without any other surfactant and stabilizing agent. The gold wire was skillfully treated to improve the nucleation for growth of ZnO nanostructures and to further improve the performance of the biosensor, which was construct by immobilizing tyrosinase (Tyr) on the ZnO nanorods for phenol detection. Electrochemical measurement, Fourier transform infrared and scanning electron microscopic analyses demonstrated that the Tyr was stably adsorbed on the ZnO nanorods surface with bioactivity for phenol oxidization. The biosensor reached 95% of steady-state current within 5 s, and the sensitivity was as high as 103.08 µA/mM at $C_{\text{phenol}} > 20 \mu$M and was 40.76 µA/mM at $C_{\text{phenol}} < 20 \mu$M. The detection limit of 0.623 µM was obtained at a signal/noise ratio of 3.

1. Introduction

In recent years, the nanostructural ZnO has attracted considerable interests due to its wide direct band gap, strong exciton binding energy, aesthetic morphologies, and multifunctional applications. Besides the optoelectronic properties, the nanostructural ZnO also possesses a lot of advantages for biosensing, such as high aspect ratio, polar surface along the c-axis, good electron communication, and nontoxicity. Notably, the isoelectric point (IEP) of ZnO is as high as about 9.5, which is suitable for immobilization of the biomolecules with low IEP, such as enzymes and proteins, assisted by electrostatic attraction in proper pH value.1 So far, ZnO nanoparticles, porous film, nanocombs, and nanorods have been developed into biosensors to detect cytochrome c,4–3 protein,4 uric acid,5 glucose,6,7 and phenolic,8 respectively.

To fabricate the ZnO nanostructure, the hydrothermal method has gained more attention due to its simple process, low temperature, and mass product. The hydrothermal growth of ZnO nanostructures generally involves chemical reaction between a zinc salt and amine compound in water or water–ethanol.9–15 In the present case, we just used Zn powders as the source material and a gold wire as collection substrate to synthesize ZnO nanorods in deionized water. There are no other ions or molecules in the reaction system, so defects in the product induced from heterogeneity in ions or molecules was avoided.

In present work, Tyrosinase (Try), with a low IEP of about 4.5,16 was chosen as a model enzyme to catalyze the target phenol, which is a highly toxic contaminant in medicine, food, and the environment. The similar biosensor has been constructed in our previous report8 by immobilizing Tyr on the ZnO nanorods and the environment. The similar biosensor has been constructed in our previous report8 by immobilizing Tyr on the ZnO and the environment. The similar biosensor has been constructed in our previous report8 by immobilizing Tyr on the ZnO nanorods.

We shall present the construct method and the improved sensing characteristics in detail.

2. Experimental Section

The construct procedure of the biosensor is shown in Figure 1. The ZnO nanorods were fabricated on the treated gold sphere surface, followed by immobilization of the Tyr. The detailed experiments are described in the following.

A gold wire (99.99%, commercial) with a diameter of 0.5 mm was used as substrate for ZnO nanorod growth and further as an electrode for the electrochemical reaction. To link the ZnO nanorods stably and, further more, on the electrode, one top of the gold wire was melted into a sphere, coated with a thin layer of zinc on the ball surface by thermal evaporation, and then put into a heated tube furnace at 300 °C for 30 min to form a Zn–Au alloy. The Zn–Au alloy-covered gold wire was immersed into boiling potassium hydroxide solution (2 M) for 2 h and $\text{H}_2\text{SO}_4/\text{H}_2\text{O}_2$ solution with a volume ratio of 7/3 for 30 min, respectively, and then washed with deionized water. After above treatment, the gold ball presented a rough Zn–Au-coated surface. The surface was characterized by scanning electron microscopy (SEM, JSM-6360LV) and energy dispersive X-ray (EDX, Genesis2000 XM60).

Zinc powder (0.5 g, 99.95%, commercial) were put into deionized water (80 mL, >17 MΩ cm$^{-2}$) in a Teflon-lined
stainless steel autoclave. The sphere end of the gold wire that was treated with the above procedure was hung vertically in water and sealed in the autoclave; the autoclave was then placed in an electric oven for hydrothermally growing of ZnO at 85 °C. The reaction was allowed to proceed for 20 h, after which the sample was taken out, washed with deionized water, and finally dried in air. The product was characterized by SEM and photoluminescence (PL, FLS920).

The ZnO nanorods on the gold sphere were immersed into a Tyr (EC 232-653-4, from mushroom) solution (2 mg mL⁻¹) at 4 °C for 10 h to immobilize the enzyme on the nanorods surface, based on the electrostatic attraction between the positively charged ZnO and the negatively charged Tyr in our experimental condition. Then, the modified Tyr/ZnO/Au was washed thoroughly with deionized water to remove the free Tyr. The immobilization results were examined by SEM and Fourier transform infrared spectroscopy (FTIR, Nicolet 380).

Electrochemical measurements were performed with a CHI 660C (CH Instrument Co. Shanghai) electrochemical workstation. The PBS pH value is a basic factor that influenced the Tyr catalysis capability. Our previous report¹⁷ demonstrated that the Tyr/ZnO sensor exhibited the best performance when the pH value was 7.0. In the present case, all electrochemical measurements were carried out at the optimized pH value.

3. Results and Discussion

Figure 2 shows the SEM images and EDX spectrum of the gold ball surface after treatment. It clearly exhibits a rough porous morphology in Figure 2a and Figure 2b. The corresponding EDX spectrum in Figure 2c reveals that there is a Zn–Au alloy layer on the treated gold ball surface. In this alloy layer, the charge transfer from Zn to Au induces a decrease of electrons in the Au (5d) band as a consequence of s–d and p–d rehybridization in Au.¹⁸,¹⁹ The rough Zn–Au alloy surface is beneficial to nucleation,²⁰ and the good chemical activity²¹,²² is also good for growth of ZnO nanostructures.

After the hydrothermal reaction, the gold sphere surface was covered by nanostructure ZnO. The SEM image in Figure 3a shows the nanorod morphology of the as-grown product with a diameter of about 80 nm. The hydrothermal reaction mechanism from Zn to ZnO was proposed to occur in the following steps:

![Figure 2. SEM images of the treated gold sphere surface with low (a) and high (b) magnifications and the corresponding EDX spectrum (c).](image2)

![Figure 3. SEM images of ZnO nanorods before (a) and after (b) immobilization of Tyr.](image3)
These equations reveal the formation process of ZnO nanorods: an H2O molecule is ionized into H3O⁺ (H⁺), which then react with Zn to form Zn(H2O)₆²⁺, Zn(H₂O)₆²⁺ further transfer into Zn(OH)₄²⁻ and finally dehydrates into ZnO. The hydrothermal reaction avoided the influence of the heterogeneous ion because the ZnO nanorods grew from Zn powders in water without any other reagent. As shown in Figure 4, the PL spectrum of the ZnO nanorode on the gold sphere shows a strong near-band-edge emission band at 378 nm and a very weak defect-related green emission at about 520 nm. This shows that the defects in ZnO nanocrystal surface are low, 23, 24 Therefore, the charge state of the defect 24 is less influential, and the positive electricity on the ZnO nanorods surface is stronger. This is propitious to adsorb Tyr on the ZnO nanorods.

On the basis of the electrostatic attraction between the high IE ZnO and low IE Tyr, the enzyme molecules were effectively immobilized on the ZnO nanorods. Compared with the as-grown product, the SEM image of the Tyr-modified ZnO nanorods in Figure 3b clearly exhibits some rough cystiform tubers on the ZnO nanorods surfaces. Figure 5 is the FTIR spectra of ZnO-Tyr in reflection mode. The peaks at 2921 and 1385 are the absorption of −CH₃ and −CH₂−. The peak at 1040 cm⁻¹ is the absorption of −C−OH vibration. The peak at 1649 cm⁻¹ for amide I is the absorption of −C=O stretching vibration of peptide linkages in the protein’s backbone. The peak at 1533 for amide II is the absorption of −N−H bending and C−N stretching. The strongest peak nearby 500 is the absorption of ZnO nanorods. This demonstrated that the Tyr were successfully adsorbed on the ZnO nanorods, and the immobilized Tyr retained its bioactivity or native structure. 25

On the basis of the electrostatic attraction between the high IE ZnO and low IE Tyr, the enzyme molecules were effectively immobilized on the ZnO nanorods. Compared with the as-grown product, the SEM image of the Tyr-modified ZnO nanorods in Figure 3b clearly exhibits some rough cystiform tubers on the ZnO nanorods surfaces. Figure 5 is the FTIR spectra of ZnO-Tyr in reflection mode. The peaks at 2921 and 1385 are the absorption of −CH₃ and −CH₂−. The peak at 1040 cm⁻¹ is the absorption of −C−OH vibration. The peak at 1649 cm⁻¹ for amide I is the absorption of −C=O stretching vibration of peptide linkages in the protein’s backbone. The peak at 1533 for amide II is the absorption of −N−H bending and C−N stretching. The strongest peak nearby 500 is the absorption of ZnO nanorods. This demonstrated that the Tyr were successfully adsorbed on the ZnO nanorods, and the immobilized Tyr retained its bioactivity or native structure. 25

In a typical three-electrode electrochemical system, the Tyr-modified ZnO/Au wire was employed as working electrode, a platinum wire acted as auxiliary electrode, and a saturated calomel electrode (SCE) acted as reference against which all potentials were measured. Cyclic voltammetric (CV) experiments were carried out in a static electrochemical cell at 25 ± 0.2 °C. Figure 6 shows the CV curves in pH 7.0 phosphate buffer solution with and without 1 mM phenol at 50 mV s⁻¹.
buffer solution (PBS, 0.05 M, prepared by mixing the stock standard solutions of Na₂HPO₄ and NaH₂PO₄) before and after adding the detected target of phenol. No signal was observed in the select potential windows for the PBS buffer. After adding phenol to the buffer solution, the CV curve reflected an increased reduction current at about -200 mV. This current increase resulted from the reduction of enzymatic reaction product. The appearance of the reduction current indicates that the immobilization process retained the biological activity of the adsorbed Tyr on the ZnO nanorods. Under the catalysis of the Tyr on the electrode surface, the phenol was oxidized by dissolving oxygen to form o-quinone and then reduced into catechol in following steps:

\[
\text{Phenol} + \text{Tyr(O}_2\text{)} \rightarrow o\text{-quinone} \\
\text{o-quinone} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{catechol (at electrode)} \\
\text{catechol} + \text{Tyr(O}_2\text{)} \rightarrow o\text{-quinone} + \text{H}_2\text{O}
\]

To research the suitable potential in amperometric experiments, the cluster of amperometric curves at potentials of 0, -30, -60,..., -510 mV, respectively, with and without phenol were worked out. We choose the points at the 120th second in every curve to analyze the optimum working potential for phenol oxidation. As shown in Figure 7, the square symbols are the points at the 120th second in the cluster curves without phenol, and the circle symbols are with 0.5 mM phenol. Both of the current signals raised up with increase of the negative potential.

The triangle symbols in Figure 7 show their difference at the same potential correspondingly, which is regarded as the pure-catalytical current of phenol oxidation. It can be seen that the pure catalyzing current \(I_{ss}\) increases expressly from a potential of 0 to -200 mV, and trends to saturation after -200 mV. That demonstrated that the suitable potential is -200 mV for amperometric measurement.

The amperometric experiments were done in a stirred cell with a successive step addition of 10 \(\mu\)L of phenol (1 mM) standard solution to 5 mL pH 7.0 PBS at -200 mV. The reduction peak current increased with increasing phenol concentration in the buffer solution. Figure 8a illustrates a typical current—time plot for the sensor on successive step addition of phenol. As each 2 \(\mu\)M of phenol concentration was increased, the detected reduction current through the Tyr/ZnO/Au electrode rose steeply to a stable value. The response time is less than 5s, during which time the current reached 95% of steady-state value. The calibrated relationship between the reduction current and the concentration of the phenol was plotted in Figure 8b.

Table 1: The Key Parameters of Tyr Biosensors for Phenol Detection

<table>
<thead>
<tr>
<th>Method</th>
<th>Response time (s)</th>
<th>Sensitivity ((\mu)A/mM)</th>
<th>Detection limit ((\mu)M)</th>
<th>(K_{M}^{app})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr-titania sol-gel films</td>
<td>5</td>
<td>103 (\mu)A/mM</td>
<td>10</td>
<td>0.29 mM</td>
</tr>
<tr>
<td>Tyr-silica sol film</td>
<td>17</td>
<td>23.1 (\mu)A/mM</td>
<td>0.1</td>
<td>65 mM</td>
</tr>
<tr>
<td>Tyr/silicate/Nafion</td>
<td>15</td>
<td>46 (\mu)A/mM</td>
<td>1</td>
<td>0.15 mM</td>
</tr>
<tr>
<td>PAA-Tyr-PAA</td>
<td>12</td>
<td>150 (\mu)A/mM (\text{cm}^{2})</td>
<td>15.57</td>
<td>0.24 mM</td>
</tr>
<tr>
<td>Tyr-ZnO nanorods</td>
<td>5</td>
<td>12 (\mu)A/mM</td>
<td>15.57</td>
<td>0.178 (\mu)M</td>
</tr>
<tr>
<td>Present case</td>
<td>5</td>
<td>103.08 (\mu)A/mM</td>
<td>0.623</td>
<td>0.178 (\mu)M</td>
</tr>
</tbody>
</table>

![Figure 8](image_url)

Figure 8. The current—time response (a) and the calibrated current—concentration relationship (b) for successively increasing phenol concentration in 2 \(\mu\)M steps at -200 mV; Panel b was separated into two linear regions corresponding to \(C_{\text{phenol}} < 20 \mu\)M (c) and \(C_{\text{phenol}} > 20 \mu\)M (d), respectively.
which can be separated into two linear regions corresponding to lower and higher concentration, as shown in Figure 8, panels c and d, respectively. It is evaluated that the sensitivity is 40.76 μA/Mm and 103.08 μA/Mm to the phenol concentration less than and more than 20 μM, respectively. The detection limit is 0.623 μM at a signal-to-noise ratio of 3. The calculated apparent Michaelis–Menten constant \(K_M^{app} \) is 0.178 μM according to the Lineweaver–Burk equation.29

The performance of this Tyr/ZnO biosensor compared with other reported Tyr biosensors is summarized in Table 1. It can be seen from Table 1 that the present ZnO/Tyr biosensor exhibits better performance than other reported Tyr sensors. It shows faster response, higher sensitivity, lower detection limit, and smaller (\(K_M^{app} \)) constant. Compared with our previously reported ZnO/Tyr biosensor,3 the sensitivity and the detection limit was improved by about one order of magnitude. Different from the pasting of the ZnO nanorod on the electrode by nafion previously, the ZnO nanorods were grown directly and stably on the treated rough gold electrode by pretreatment of the gold electrode. The favorable reproducibility is estimated for three electrodes made independently using the same condition as mentioned above. The relative standard deviation is calculated to be 7.9%, indicating good fabrication reproducibility.

4. Conclusions

The gold electrode was treated with a specific procedure to form a rough sphere head covered with an Au–Zn alloy layer, which made the ZnO nanorods grew easily and stably. The hydrothermal reaction is very simple and happened in only water using Zn powder as source material. The ZnO nanorods were had smooth surfaces and uniform size, with a diameter of about 80 nm. The SEM and PL measurements revealed the good crystal quality of ZnO nanorods, the reliable connection between the ZnO and the electrode, and the effective immobilization of Tyr on the ZnO nanorods. This effectively constructed a direct bridge for electron transfer during the Tyr catalyzing the detected phenol. SEM, FTIR, and electrochemical measurements demonstrated that the Tyr with low IEP was stably adsorbed on the ZnO nanorods with high IEP and that the absorbed enzyme remained its bioactivity to a large extent. The biosensor exhibited a good performance. The response time was less than 5 s upon adding phenol to the buffer solution. The sensitivity and detection limit were improved to 103.08 μA/Mm and 0.623 μM due to the pretreatment of the gold electrode. The favorable stability and reproducibility were befiting for the biosensor to detect the phenol.

Acknowledgment. This work was supported by 863 program (2006AA03Z313), NSFC (60576008, 10674023, 60725413 and 20675013), 973 program (2007CB936300), and the NSFJ (BK2006090).

References and Notes

JP080001C