划分超视距、近距的多机协同作战战术决策

牛成伟 高晓光 张 坤 李 波 (971)

基于内分泌激素调节机制的量子进化算法

孔晓琳 王 慧 巨安丽 齐 敏 吕国云 樊养余 (978)

腐蚀管路剩余寿命及参数灵敏度分析

支华哲 周 红 何 浩 (984)

Hill’s方程的 Magnus 积分

王 博 邓子辰 李文成 徐晓建 (988)

基于动强度可靠性的输流管路动力优化设计

崔红波 刘永寿 李宝辉 吴子燕 岳学峰 (992)

简 讯

西安交通大学纪念钱学森诞辰 100 周年 .. (843)

2011 版《挑大学 选专业》列出 35 校办光信息科学与技术本科专业在 B 等以上 ... (870)

2011 版《挑大学 选专业》列出 22 校办计算机科学与技术本科专业在 A+等以上 ... (897)

《西北工业大学学报》2008 年（第 26 巻）全年论文全部被工程索引数据库（Ei Compendex）收录 …………………… (903)

林超强说：季老师还使我学会了分析问题和解决问题的方法 …………………………………………………………………… (908)

中国人民的朋友美国加州理工学院（CIT）教授 Frank E. Marble 在《钱学森手稿》（Manuscripts of

H. S. Tsiens 1938-1955）29 照片中出现过 10 次 …………………………………………………………………………… (933)

《西北工业大学学报》2008 年至 2010 年论文英文摘要字符数在 2000 以上的情况 ………………………………………………… (938)

《西北工业大学学报》2009 年全年论文共 170 篇全部被工程索引数据库（Ei Compendex）收录 …………………………… (947)

1955 年华东航空学院的《航院学报》创刊号的首篇季文美老师的论文与给林超强深刻印象的圆满

答疑有密切关系 ……… (998)

王甲升校友受数学家丘成桐呼吁的启发倡议成立“文美科技教育研究中心” ………………………………………………… (998)
基于内分泌激素调节机制的量子进化算法

孔晓琳，王毅，巨安丽，齐敏，吕国云，樊养余

（西北工业大学 电子信息学院，陕西 西安）

摘 要：针对传统量子进化算法中搜索某些适应度函数时的稳不稳定性和精确性差的问题，在计算量子旋转角时引入内分泌激素调节规律，使得量子旋转角根据性激素浓度的个体适配度值自适应调整，提出了一种基于内分泌激素调节机制的量子进化算法，并用于 Schaffer 函数寻找和三维人脸图像分割。仿真实验结果表明，该算法不仅保留了传统量子进化算法收敛速度快的特点，而且提高了其精确性和稳定性。关 键 词：量子进化算法，内分泌机制，量子旋转角
中图分类号：TP391 文献标识码：A 文章编号：1000-2758(2011)06-0978-06

量子进化算法（quantum evolution algorithm，QEA）是在概率进化算法的基础上发展起来的新进化算法，是量子计算与进化计算融合的产物。该算法以量子计算（quantum computing）的一些概念和理论，诸如量子比特（qubits）和量子叠加态（superpositions of states）作为基础，使用量子比特编码染色体，这种概率幅度表示可以使得一个染色体同时表示多个状态的信息，带来丰富的种群，并利用量子运算门实现染色体的更新操作，从而实现种群的优化。

L. S. Farby 于 2001 年提出了对激素腺体分泌激素的通用规律[10,11]：激素的变化规律具有单调性和非负性，激素分泌调节的上升和下降遵循 Hill 函数规律。为了改进传统量子进化算法中存在的问题，本文引入内分泌激素的调节规律，构造基于内分泌调节机制的数学因子，使量子旋转角根据当前进化代数和个体的适应度值自适应地调节旋转角度值，这有效增强了进化过程的种群多样性，并利于克服早熟现象和进化缓慢问题，标准测试函数和实际人脑数据实验验证了本文所提算法有着更好的收敛性，且精确性和稳定性较传统量子进化算法有较大提高。

1 内分泌激素调节量子进化算法

1.1 量子染色体

量子进化算法（quantum evolution algorithm，QEA）是量子计算与进化计算融合的产物。在量子进化算法（QEA）中，最小的信息单元为一个量子位——量子比特。一个量子比特的状态可以是 0 或 1，其状态可以表为

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

（1）

收稿日期：2011-04-06

基金项目：国家自然科学基金（60903177）及西北工业大学“翱翔之星计划”资助

作者简介：孔晓琳（1986—），女，西北工业大学硕士研究生，主要从事医学图像处理的研究。
式中, α, β 为表示相应状态出现概率的两个复数 \(a | \alpha^2 + | \beta^2 = 1 \); \(a | \alpha^2, | \beta^2 \) 分别表示量子比特处于状态 0 和状态 1 的概率。

一个具有 \(m \) 个量子比特的系统可以描述为

\[
\begin{bmatrix}
\alpha_1 & \alpha_2 & \cdots & \alpha_m \\
\beta_1 & \beta_2 & \cdots & \beta_m
\end{bmatrix}
\] (2)

式中, \(a | \alpha^2 + | \beta^2 = 1 \), \(i, j = 1, 2, \cdots, m \) 为量子比特的状态数。这种方法可以表示任意的线性叠加态, 一个具有 \(m \) 个量子比特的系统可表示为 \(2^m \) 个状态。因为量子比特是一种可以表示任意的线性叠加态, 所以量子进化算法具有丰富的多样性, 但随着量子比特数趋于 0 或 0, 量子色体收敛于一个状态, 这时多样性消失, 算法收敛。

与传统进化算法相比, 量子进化算法 (QEA) 具有很多优点: 更好的种群多样性、全局寻优能力和群体规模较小但不影响算法的性能; 在进化过程中利用了个体过去的历史信息等等。

1.2 内分泌系统调节规律

内分泌系统由内分泌细胞、内分泌腺体所分泌的激素（如荷尔蒙）和内分泌腺体所组成, 是生物信息传递系统, 通过分泌的多种激素调节机体的生理功能, 维持与环境的相对稳定, 从而影响生物体的行为。

L.S. Farhy 于 2001 年提出了对激素腺体分泌激素的通用规律: 激素的变化规律具有单调性和非负性, 激素分泌调节的上升和下降遵循 Hill 函数规律, 如以下方程式所示

\[
F_{up}(G) = \frac{G}{T + G} \\
F_{down}(G) = \frac{T}{T + G}
\] (3)

式中, \(F \) 为 Hill 调控函数, \(up \) 和 \(down \) 分别表示刺激和抑制关系, \(G \) 为函数自变量; \(T \) 为阈值, 且 \(T > 0 \); \(n \) 为 Hill 系数, 且 \(n \geq 1 \); \(n \) 为 Hill 数字, 且 \(n \) 同时确定等线上升和下降的斜率。Hill 函数有如下性质:

1) \(F_{up}(G) = 1 - F_{down}(G) \)

2) \(F(G) \) 为 Hill 函数, \(0 < F(G) < 1 \),

3) \(F(G) \) 为 Hill 函数, \(0 < F(G) < 1 \),

其中, \(F(G) \) 表示荷尔蒙分泌的荷尔蒙和消减同时作用, 荷尔蒙浓度的计算公式如下

\[
C(t) = \int_{0}^{t} S(\tau)e^{-a(t-\tau)}d\tau
\] (5)

式中, \(C \) 表示荷尔蒙浓度, \(t \) 是时间, \(S \) 表示荷尔蒙分泌速率, \(a \) 表示荷尔蒙消减率。

如果激素 \(x \) 受激素 \(y \) 控制, 则激素 \(x \) 的分泌速率 \(S_x \) 与激素 \(y \) 的浓度 \(C_y \) 的关系为

\[
S_x = aF(C_y) + S^n_x
\] (6)

式中, \(S^n_x \) 表示激素 \(x \) 的基础分泌速率, \(a \) 为常量系数。

1.3 基于内分泌调节机制的量子进化算法

基于内分泌调节机制的量子进化算法利用激素调节的 Hill 函数规律, 设计调节旋转量子角的因子, 使得该算法的旋转量子角随着内分泌激素的相互促进和抑制, 来对环境变化作出反应, 以达到逐渐适应环境的能力, 使个体保持较好的多样性, 有效克服早熟和进化缓慢等问题。基于内分泌激素调节机制的量子进化算法的流程图如图 1 所示。

图 1 本文算法流程图

本文算法具体步骤如下:

1) 初始化进化代数: \(g = 1 \);

2) 初始化元素种群 \(Q(g) \), 设种群大小为 \(n \), 初始化种群的每个个体中 \(a \) 和 \(b \) 均为 \(1 / \sqrt{2} \), 这意味着几乎所有可能的线性叠加态以相同的概率出现。

3) 采用概率观测法对种群 \(Q(g) \) 中的所有个体
依次进行观测，得到二进制种群 $P(g)$；
4) 对于种群 $P(g)$ 中的每一个二进制解，适用应度函数进行评价并保存最优解；
5) 判断是否满足停止条件，若满足则算法终止，保留最优解，若不满足则继续；
6) $g = g + 1$，由 $Q(g - 1)$ 生成 $P(g)$，同步骤3；
7) 评价 $P(g)$ 并保存最优解，若 $P(g)$ 中的最优解比所保存的最优解好，就用它取代所保存的最优解；
8) 由量子门更新 $Q(g)$，使染色体向具有更高适应度的染色体变异；量子旋转门$^{[5-7,13]}$ 可表示为
$$U(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(7)
量子比特的更新过程可描述为
$$[\alpha_i, \beta_i] = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \times [\alpha_i]$$
(8)
式中，θ 表示旋转角度。

本文引入内分泌激素的调节规律，构造基于内分泌调节机制的数学因子，使量子旋转角根据当前进化代数和个体的适应度值自适应地调节旋转角度值，基于内分泌调节机制的数学因子设计如下式所示
$$e = \frac{(f(x))^2}{(f(b) - f(m))^2 + (f(x))^2}$$
(9)
式中，$f(x)$ 是当前个体的适应度值，$f(b)$，$f(m)$ 分别是当前进化代数的最大、最小适应度值；系数因子 $n = 2$，控制 Hill 函数的斜率。随着当前个体适应度值的增加，旋转量子角度值也随之增加，反之亦然。

本文算法的旋转量子角度值计算公式如下
$$\theta = e \times \Delta \theta$$
(10)
式中，$\Delta \theta$ 的取值如表 1 所示，旋转角 θ 根据调节因子 e 自适应调整。
9) 返回步骤 5)。

<table>
<thead>
<tr>
<th>x_i</th>
<th>b_i</th>
<th>$f(x) \geq f(b)$</th>
<th>$\Delta \theta$</th>
<th>$s(\alpha, \beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>是</td>
<td>0</td>
<td>± 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>是</td>
<td>0</td>
<td>± 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>是</td>
<td>0.01\pi</td>
<td>+ 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>否</td>
<td>0</td>
<td>± 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>是</td>
<td>0.01\pi</td>
<td>- 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>否</td>
<td>0</td>
<td>± 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>否</td>
<td>0</td>
<td>± 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>是</td>
<td>0</td>
<td>± 1</td>
</tr>
</tbody>
</table>

2 实验结果及分析

2.1 实验一：测试函数
为了验证本文算法的有效性，对 Schaffer 函数进行测试，该函数在定义域内只有一个全局最小点 $f(0,0) = 0$，表示为
$$f(x_1, x_2) = 0.5 + \frac{\sin^2(\sqrt{x_1^2 + x_2^2} - 0.5)}{1.0 + 0.001(x_1^2 + x_2^2)}$$
(11)
$$x_1, x_2 \in [-100, 100]$$

Schaffer 函数的三维曲线图如图 2 所示，它在定义域范围内仅有一个全局最小点。

![Schaffer 函数的三维曲线图](image)

表 2 算法结果对比

<table>
<thead>
<tr>
<th></th>
<th>均值</th>
<th>方差</th>
<th>运行时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>量子</td>
<td>x_1</td>
<td>127.54</td>
<td>6.092</td>
</tr>
<tr>
<td>进化</td>
<td>x_2</td>
<td>128.08</td>
<td>6.238</td>
</tr>
<tr>
<td>算法</td>
<td>最优值</td>
<td>4.762×10^{-3}</td>
<td>1.191×10^{-4}</td>
</tr>
<tr>
<td>本文</td>
<td>x_1</td>
<td>127.44</td>
<td>6.090</td>
</tr>
<tr>
<td>算法</td>
<td>最优值</td>
<td>4.636×10^{-3}</td>
<td>1.100×10^{-5}</td>
</tr>
</tbody>
</table>

表 2 列出了量子进化算法和本文算法所得结果的平均值、方差和算法单次运行时间的平均值，对比了两种算法的性能。本文算法的最优值平均值比量子进化算法减小 0.126×10^{-3}，方差减小 0.091×10^{-5}，平均值代表了算法的精确性，方差代表了算法
的稳定性，可以看出本文算法的精确性、稳定性都得到了提高。

![图3 量子进化算法和本文算法收敛曲线](image1)

![图4 图3前80代的放大图](image2)

由图3、图4两种算法的收敛曲线可以看出，虽然传统量子进化算法收敛很快，但最终收敛到的适应度值大于本文算法的结果。本文算法虽然在70代左右才完全收敛，但显然摆脱局部最优值的能力较传统量子进化算法更强。

2.2 实验二：三维医学图像分割

为了更进一步验证本文算法的性能，我们将其应用于三维分割的最佳阈值法。

将信息论中的Shannon熵概念用于三维医学图像分割，其依据是使得图像中目标与背景分布的信息量最大，即通过测量图像灰度直方图的熵找出最佳阈值。通过计算最大熵，就可以确定出分割所需的最佳阈值[12]。

根据Shannon熵的概念，对于灰度范围为[0,1]的图像，其直方图的熵定义为

\[
H = - \sum_{i=0}^{L-1} p_i \ln p_i
\]

式中 \(p_i \) 为第 \(i \) 个灰度出现的概率。在双阈值的情况下，若 \(t_1 < t_2 \) 时，则图像的熵为

\[
H(t_1, t_2) = \ln \left(\sum_{i=0}^{t_1} p_i \right) + \ln \left(\sum_{i=t_1+1}^{t_2} p_i \right) + \ln \left(\sum_{i=t_2+1}^{L-1} p_i \right) - \sum_{i=0}^{t_1} p_i \ln p_i - \sum_{i=t_1+1}^{t_2} p_i \ln p_i - \sum_{i=t_2+1}^{L-1} p_i \ln p_i
\]

（13）

最佳阈值 \(t_1^*, t_2^* \) 为使熵取得最大值。最大熵函数的三维图如图5所示。

![图5 最大熵函数的三维图](image3)

本文将图6所示的脑部256级三维灰度原始图像（体素数分别为174×138×119的三维搜索空间）分割为脑灰质、脑白质、脑脊液三部分[13]。根据最佳熵阈值法，求出两个阈值，所以量子比特数 \(m = 16 \)。前8位表示阈值 \(t_1 \)，后8位表示阈值 \(t_2 \)。根据穷尽搜索的结果，真实阈值为(61, 113)，真实最大熵值为11.9178。

![图6 脑部原始图像](image4)

在种群 \(n = 50 \)，最大进化代数 \(g_{\text{max}} = 200 \) 的条件下，本文算法50次计算所得平均熵值并取整为 \(t_1 = 61, t_2 = 113 \)，所得平均最大熵值为11.9175124，而量子进化算法在同样的条件下运行50次所得的最大熵平均值为11.9174346，结果如表3所示。本文算法的最大熵值比量子进化算法增加0.0001，而方差减小3.117×10^{-6}。

本文算法分割结果如图7所示。图7a）为大脑脑脊液部分的三维视图（脑室内及脑部外边缘处均含有脑脊液）。图7b）为大脑脑灰质部分的三维视图。图7c）为大脑数据沿轴位切去一部分的脑白质。
三维视图。

表 3 算法结果对比

<table>
<thead>
<tr>
<th>算法</th>
<th>结果</th>
<th>平均值</th>
<th>方差</th>
<th>运行时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>量子</td>
<td>阈值 l_1</td>
<td>61.52</td>
<td>2.051</td>
<td></td>
</tr>
<tr>
<td>进化</td>
<td>阈值 l_2</td>
<td>113.4</td>
<td>1.202</td>
<td></td>
</tr>
<tr>
<td>算法</td>
<td>最大熵</td>
<td>11.917 4×10^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>本文</td>
<td>阈值 l_1</td>
<td>61.40</td>
<td>1.510</td>
<td></td>
</tr>
<tr>
<td>算法</td>
<td>阈值 l_2</td>
<td>113.28</td>
<td>0.736</td>
<td></td>
</tr>
<tr>
<td>最大熵</td>
<td>11.917 5×10^{-9}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 7 分割结果

算法用于三维人体图像分割的收敛曲线如图 8 所示。由图 8 可以看出本文算法在保持传统量子进化算法快速收敛特点的同时，也提高了算法的稳定性和精确性。

由图 9 可以看出本文算法在 30 代左右的最大熵值已经稳定且大于标准量子进化算法。

3 结 论

本文将内分泌激素调节规律引入到量子进化算法中，构造了基于内分泌调节机制的数学因子来调节量子旋转角度值，提出了一种基于内分泌激素调节机制的量子进化算法。该算法在计算旋转角度时加入了数学调节因子 e，算法的运算耗时基本保持不变，但提高了搜索的准确性和稳定性，将其应用于 Schaffer 函数寻优和三维人体图像分割，证实了它的优越性。

参考文献:

An Improved Quantum Evolutionary Algorithm Based on Regulation Law of Hormone in Endocrine System

Kong Xiaolin, Wang Yi, Ju Anli, Qi Min, Lu Guoyun, Fan Yangyu
(Deptartment of Electronics Engineering, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: Section 1 of the full paper explains our improved algorithm mentioned in the title. Its core consists of: "The traditional quantum evolutionary algorithm is sometimes unstable and inaccurate when it is used in searching the best solution of a fitness function. To solve this problem more effectually, the endocrine hormone regulation law was introduced into the quantum evolutionary algorithm when quantum rotation angles were calculated. The quantum rotation angles were self-adaptable to match the number of the population evolutionary generations and those of fitness values of solutions. "This algorithm was applied to the Schaffer function and 3D human brain image segmentation; the experimental results, presented in Tables 2 and 3, Figs. 3 and 4, and Figs. 7 through 9, and their analysis show preliminarily that the stability and the accuracy of the quantum evolutionary algorithm was indeed improved while the high-speed of convergence was maintained.

Key words: algorithms, analysis, chromosomes, convergence of numerical methods, experiments, flowcharting, functions, image segmentation, mechanisms, quantum theory, stability, endocrine mechanism, quantum evolutionary algorithm, quantum rotation angle